OpenLB 1.7
Loading...
Searching...
No Matches
extendedFiniteDifferenceBoundary2D.hh
Go to the documentation of this file.
1/* This file is part of the OpenLB library
2 *
3 * Copyright (C) 2007 Orestis Malaspinas, Jonas Latt
4 * E-mail contact: info@openlb.net
5 * The most recent release of OpenLB can be downloaded at
6 * <http://www.openlb.net/>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public
19 * License along with this program; if not, write to the Free
20 * Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
21 * Boston, MA 02110-1301, USA.
22*/
23
24#ifndef EXTENDED_FINITE_DIFFERENCE_BOUNDARY_2D_HH
25#define EXTENDED_FINITE_DIFFERENCE_BOUNDARY_2D_HH
26
29#include "core/util.h"
30#include "dynamics/lbm.h"
31
32
33namespace olb {
34
35
37
38template<typename T, typename DESCRIPTOR, int direction, int orientation>
40ExtendedStraightFdBoundaryPostProcessor2D(int x0_, int x1_, int y0_, int y1_)
41 : x0(x0_), x1(x1_), y0(y0_), y1(y1_)
42{
43 OLB_PRECONDITION(x0==x1 || y0==y1);
44 this->getName() = "ExtendedStraightFdBoundaryPostProcessor2D";
45}
46
47template<typename T, typename DESCRIPTOR, int direction, int orientation>
49processSubDomain(BlockLattice<T,DESCRIPTOR>& blockLattice, int x0_, int x1_, int y0_, int y1_)
50{
51 using namespace olb::util::tensorIndices2D;
52 typedef lbm<DESCRIPTOR> lbH;
53 typedef DESCRIPTOR L;
54 enum {x,y};
55
56 for (int iX=x0; iX<=x1; ++iX) {
57 for (int iY=y0; iY<=y1; ++iY) {
58 Cell<T,DESCRIPTOR> cell = blockLattice.get(iX,iY);
59 T rho, u[L::d];
60 cell.computeRhoU(rho,u);
61
62 T uSqr = util::normSqr<T,DESCRIPTOR::d>(u);
63
64 T dx_U[L::d], dy_U[L::d];
65 interpolateGradients<0>(blockLattice, dx_U, iX, iY);
66 interpolateGradients<1>(blockLattice, dy_U, iX, iY);
67
68 T rhoGradU[L::d][L::d];
69 rhoGradU[x][x] = rho * dx_U[x];
70 rhoGradU[x][y] = rho * dx_U[y];
71 rhoGradU[y][x] = rho * dy_U[x];
72 rhoGradU[y][y] = rho * dy_U[y];
73
74 T omega = blockLattice.getDynamics(iX, iY) -> getOmega();
75 T sToPi = - (T)1 / descriptors::invCs2<T,DESCRIPTOR>() / omega;
76
78 pi[xx] = (T)2 * rhoGradU[x][x] * sToPi;
79 pi[yy] = (T)2 * rhoGradU[y][y] * sToPi;
80 pi[xy] = (rhoGradU[x][y] + rhoGradU[y][x]) * sToPi;
81 // here ends the "regular" fdBoudaryCondition
82 // implemented in OpenLB
83
84 // first we compute the term
85 // (c_{i\alpha} \nabla_\beta)(rho*u_\alpha*u_\beta)
86 T dx_rho, dy_rho;
87 interpolateGradients<0>(blockLattice, dx_rho, iX, iY);
88 interpolateGradients<1>(blockLattice, dy_rho, iX, iY);
89 for (int iPop = 0; iPop < L::q; ++iPop) {
90 T cGradRhoUU = T();
91 for (int iAlpha=0; iAlpha < L::d; ++iAlpha) {
92 cGradRhoUU += descriptors::c<L>(iPop,iAlpha) * (
93 dx_rho*u[iAlpha]*u[x] +
94 dx_U[iAlpha]*rho*u[x] +
95 dx_U[x]*rho*u[iAlpha] + //end of dx derivatice
96 dy_rho*u[iAlpha]*u[y] +
97 dy_U[iAlpha]*rho*u[y] +
98 dy_U[y]*rho*u[iAlpha]);
99 }
100
101 // then we compute the term
102 // c_{i\gamma}\nabla_{\gamma}(\rho*u_\alpha * u_\beta)
103 T cDivRhoUU[L::d][L::d]; //first step towards QcdivRhoUU
104 for (int iAlpha = 0; iAlpha < L::d; ++iAlpha) {
105 for (int iBeta = 0; iBeta < L::d; ++iBeta) {
106 cDivRhoUU[iAlpha][iBeta] = descriptors::c<L>(iPop,x) *
107 (dx_rho*u[iAlpha]*u[iBeta] +
108 dx_U[iAlpha]*rho*u[iBeta] +
109 dx_U[iBeta]*rho*u[iAlpha])
110 + descriptors::c<L>(iPop,y) *
111 (dy_rho*u[iAlpha]*u[iBeta] +
112 dy_U[iAlpha]*rho*u[iBeta] +
113 dy_U[iBeta]*rho*u[iAlpha]);
114 }
115 }
116
117 //Finally we can compute
118 // Q_{i\alpha\beta}c_{i\gamma}\nabla_{\gamma}(\rho*u_\alpha * u_\beta)
119 // and Q_{i\alpha\beta}\rho\nabla_{\alpha}u_\beta
120 T qCdivRhoUU = T();
121 T qRhoGradU = T();
122 for (int iAlpha = 0; iAlpha < L::d; ++iAlpha) {
123 for (int iBeta = 0; iBeta < L::d; ++iBeta) {
124 int ci_ci = descriptors::c<L>(iPop,iAlpha)*descriptors::c<L>(iPop,iBeta);
125 qCdivRhoUU += ci_ci * cDivRhoUU[iAlpha][iBeta];
126 qRhoGradU += ci_ci * rhoGradU[iAlpha][iBeta];
127 if (iAlpha == iBeta) {
128 qCdivRhoUU -= cDivRhoUU[iAlpha][iBeta]/descriptors::invCs2<T,L>();
129 qRhoGradU -= rhoGradU[iAlpha][iBeta]/descriptors::invCs2<T,L>();
130 }
131 }
132 }
133
134 // we then can reconstruct the value of the populations
135 // according to the complete C-E expansion term
136 cell[iPop] = lbH::equilibrium(iPop,rho,u,uSqr)
137 - descriptors::t<T,L>(iPop) * descriptors::invCs2<T,L>() / omega
138 * (qRhoGradU - cGradRhoUU + 0.5*descriptors::invCs2<T,L>()*qCdivRhoUU);
139 }
140 }
141 }
142}
143
144template<typename T, typename DESCRIPTOR, int direction, int orientation>
147{
148 processSubDomain(blockLattice, x0, x1, y0, y1);
149}
150
151template<typename T, typename DESCRIPTOR, int direction, int orientation>
152template<int deriveDirection>
155 T velDeriv[DESCRIPTOR::d], int iX, int iY) const
156{
158 interpolateVector(velDeriv, blockLattice, iX, iY);
159}
160
161template<typename T, typename DESCRIPTOR, int direction, int orientation>
162template<int deriveDirection>
164interpolateGradients(BlockLattice<T,DESCRIPTOR> const& blockLattice, T& rhoDeriv, int iX, int iY) const
165{
167 interpolateScalar(rhoDeriv, blockLattice, iX, iY);
168}
169
170
172
173template<typename T, typename DESCRIPTOR, int direction, int orientation>
178
179template<typename T, typename DESCRIPTOR, int direction, int orientation>
186
187template<typename T, typename DESCRIPTOR, int direction, int orientation>
194
195} // namespace olb
196
197#endif
Platform-abstracted block lattice for external access and inter-block interaction.
virtual Dynamics< T, DESCRIPTOR > * getDynamics(DynamicsPromise< T, DESCRIPTOR > &&)=0
Return pointer to dynamics yielded by promise.
Cell< T, DESCRIPTOR > get(CellID iCell)
Get Cell interface for index iCell.
Highest-level interface to Cell data.
Definition cell.h:148
void computeRhoU(T &rho, T u[descriptors::d< DESCRIPTOR >()]) const
Compute fluid velocity and particle density on the cell.
Definition cell.hh:232
This class computes the finite difference approximation to LB boundary conditions on a flat wall in 2...
void processSubDomain(BlockLattice< T, DESCRIPTOR > &blockLattice, int x0_, int x1_, int y0_, int y1_) override
Execute post-processing step on a sublattice.
ExtendedStraightFdBoundaryPostProcessor2D(int x0_, int x1_, int y0_, int y1_)
void process(BlockLattice< T, DESCRIPTOR > &blockLattice) override
Execute post-processing step.
PostProcessor2D< T, DESCRIPTOR > * generate() const override
PostProcessorGenerator2D< T, DESCRIPTOR > * clone() const override
Interface of 2D post-processing steps.
std::string & getName()
read and write access to name
Top level namespace for all of OpenLB.
#define OLB_PRECONDITION(COND)
Definition olbDebug.h:46
static void interpolateScalar(T &rhoDeriv, BlockLattice< T, DESCRIPTOR > const &blockLattice, int iX, int iY)
static void interpolateVector(T velDeriv[DESCRIPTOR::d], BlockLattice< T, DESCRIPTOR > const &blockLattice, int iX, int iY)
Collection of common computations for LBM.
Definition lbm.h:182
Compute number of elements of a symmetric d-dimensional tensor.
Definition util.h:210
Set of functions commonly used in LB computations – header file.