Matching entries: 0
settings...
de Luca Xavier Augusto L, Ross-Jones J, Cantarelli Lopes G, Tronville P, Silveira Gonçalves J, Rädle M and Krause M (2018), "Microfiber Filter Performance Prediction using a Lattice-Boltzmann Method", Communications in Computational Physics., April, 2018. Vol. 23(4), pp. 910-931.
BibTeX:
@article{augusto:17,
  author = {de Luca Xavier Augusto, L. and Ross-Jones, J. and Cantarelli Lopes, G. and Tronville, P. and Silveira Gonçalves, J.A. and Rädle, M. and Krause, M.J.},
  title = {Microfiber Filter Performance Prediction using a Lattice-Boltzmann Method},
  journal = {Communications in Computational Physics},
  year = {2018},
  volume = {23},
  number = {4},
  pages = {910--931},
  doi = {10.4208/cicp.OA-2016-0180}
}
de Lima Corrêa L, Borguesan B, Krause M and Dorn M (2018), "Three-Dimensional Protein Structure Prediction Based on Memetic Algorithms", Computers & Operations Research. Vol. 91, pp. 160 - 177.
Abstract: Abstract Tertiary protein structure prediction is a challenging problem in Structural Bioinformatics and is classified according to the computational complexity theory as a NP-hard problem. In this paper, we proposed a first-principle method that makes use of a priori information about known protein structures to tackle the three-dimensional protein structure prediction problem. We do so by designing a multimodal memetic algorithm that uses an evolutionary approach with a ternary tree-structured population allied to a local search strategy. The method has been developed based on an incremental approach using the combination of promising evolutionary components to address the concerned multimodal problem. Three memetic algorithms focused on the problem are proposed. The first one modifies a basic version of a memetic algorithm by introducing modified global search operators. The second uses a different population structure for the memetic algorithm. And finally, the last algorithm consists of the integration of global operators and multimodal strategies to deal with the inherent multimodality of the protein structure prediction problem. The implementations take advantage of structural knowledge stored in the Protein Data Bank to guide the exploiting and restrict the protein conformational search space. Predicted three-dimensional protein structures were analyzed regarding root mean square deviation and the global distance total score test. Obtained results for the three versions outperformed the basic version of the memetic algorithm. The third algorithm overcomes the results of the previous two, demonstrating the importance of adapting the method to deal with the complexities of the problem. In addition, the achieved results are topologically compatible with the experimental correspondent, confirming the promising performance of our approach.
BibTeX:
@article{correa:17,
  author = {de Lima Corrêa, L. and Borguesan, B. and Krause, M.J. and Dorn, M.},
  title = {Three-Dimensional Protein Structure Prediction Based on Memetic Algorithms},
  journal = {Computers & Operations Research},
  year = {2018},
  volume = {91},
  pages = {160 -- 177},
  url = {https://www.sciencedirect.com/science/article/pii/S0305054817302897},
  doi = {10.1016/j.cor.2017.11.015}
}
Dapelo D, Trunk R, Krause M and Bridgeman J (2019), "Towards Lattice-Boltzmann Modelling of Unconfined Gas Mixing in Anaerobic Digestion", Computers & Fluids. Vol. 180, pp. 11-21.
Abstract: A novel Lattice-Boltzmann model to simulate gas mixing in anaerobic digestion is developed and described. For the first time, Euler-Lagrange multiphase, non-Newtonian and turbulence modelling are applied jontly with a novel hybrid boundary condition. The model is validated in a laboratory-scale framework and flow patterns are assessed through Particle Imaging Velocimetry (PIV) and innovative Positron-Emission Particle Tracking (PEPT). The model is shown to reproduce the experimental flow patterns with fidelity in both qualitative and quantitative terms. The model opens up a new approach to computational modelling of the complex multiphase flow in anaerobic digesters and offers specific advantages, such as computational efficiency, over an analogous Euler-Lagrange finite-volume computational fluid dynamics approach.
BibTeX:
@article{dapelo:19,
  author = {Dapelo, D. and Trunk, R. and Krause, M.J. and Bridgeman, J.},
  title = {Towards Lattice-Boltzmann Modelling of Unconfined Gas Mixing in Anaerobic Digestion},
  journal = {Computers & Fluids},
  year = {2019},
  volume = {180},
  pages = {11--21},
  url = {http://www.sciencedirect.com/science/article/pii/S0045793018306728},
  doi = {10.1016/j.compfluid.2018.12.008}
}
Dapelo D, Trunk R, Krause MJ, Cassidy N and Bridgeman J (2020), "The application of Buckingham pi theorem to Lattice--Boltzmann modelling of sewage sludge digestion", Computers & Fluids. Vol. 209, pp. 104632.
BibTeX:
@article{dapelo:20,
  author = {Dapelo, D. and Trunk, R. and Krause, M. J. and Cassidy, N. and Bridgeman, J.},
  title = {The application of Buckingham pi theorem to Lattice--Boltzmann modelling of sewage sludge digestion},
  journal = {Computers & Fluids},
  year = {2020},
  volume = {209},
  pages = {104632},
  url = {http://www.sciencedirect.com/science/article/pii/S0045793020302048},
  doi = {10.1016/j.compfluid.2020.104632}
}
Gaedtke M, Wachter S, Rädle M, Nirschl H and Krause M (2018), "Application of a lattice Boltzmann method combined with a Smagorinsky turbulence model to spatially resolved heat flux inside a refrigerated vehicle", Computers & Mathematics with Applications., November, 2018. Vol. 76(10), pp. 2315 - 2329.
BibTeX:
@article{gaedtke:18,
  author = {Gaedtke, M. and Wachter, S. and Rädle, M. and Nirschl, H. and Krause, M.J.},
  title = {Application of a lattice Boltzmann method combined with a Smagorinsky turbulence model to spatially resolved heat flux inside a refrigerated vehicle},
  journal = {Computers & Mathematics with Applications},
  year = {2018},
  volume = {76},
  number = {10},
  pages = {2315 -- 2329},
  url = {http://www.sciencedirect.com/science/article/pii/S089812211830436X},
  doi = {10.1016/j.camwa.2018.08.018}
}
Gaedtke M, Hoffmann T, Reinhardt V, Thäter G, Nirschl H and Krause M (2019), "Flow and heat transfer simulation with a thermal large eddy lattice Boltzmann method in an annular gap with an inner rotating cylinder", International Journal of Modern Physics C. Vol. 30(02n03), pp. 1950013.
BibTeX:
@article{gaedtke:19,
  author = {Gaedtke, M. and Hoffmann, T. and Reinhardt, V. and Thäter, G. and Nirschl, H. and Krause, M.J.},
  title = {Flow and heat transfer simulation with a thermal large eddy lattice Boltzmann method in an annular gap with an inner rotating cylinder},
  journal = {International Journal of Modern Physics C},
  year = {2019},
  volume = {30},
  number = {02n03},
  pages = {1950013},
  url = {https://doi.org/10.1142/S012918311950013X},
  doi = {10.1142/S012918311950013X}
}
Gaedtke M, Wachter S, Kunkel S, Sonnick S, Rädle M, Nirschl H and Krause M (2019), "Numerical study on the application of vacuum insulation panels and a latent heat storage for refrigerated vehicles with a large Eddy lattice Boltzmann method", Heat and Mass Transfer., Dec, 2019. , pp. 1-13.
BibTeX:
@article{gaedtke:19a,
  author = {Gaedtke, M. and Wachter, S. and Kunkel, S. and Sonnick, S. and Rädle, M. and Nirschl, H. and Krause, M.J.},
  title = {Numerical study on the application of vacuum insulation panels and a latent heat storage for refrigerated vehicles with a large Eddy lattice Boltzmann method},
  journal = {Heat and Mass Transfer},
  year = {2019},
  pages = {1--13},
  url = {https://doi.org/10.1007/s00231-019-02753-4},
  doi = {10.1007/s00231-019-02753-4}
}
Gaedtke M, Abishek S, Mead-Hunter R, King A, Mullins B, Nirschl H and Krause M (2020), "Total enthalpy--based lattice Boltzmann simulations of melting in paraffin/metal foam composite phase change materials", International Journal of Heat and Mass Transfer. Vol. 155, pp. 119870.
BibTeX:
@article{gaedtke:20,
  author = {Gaedtke, M. and Abishek, S. and Mead-Hunter, R. and King, A.J.C. and Mullins, B.J. and Nirschl, H. and Krause, M.J.},
  title = {Total enthalpy--based lattice Boltzmann simulations of melting in paraffin/metal foam composite phase change materials},
  journal = {International Journal of Heat and Mass Transfer},
  year = {2020},
  volume = {155},
  pages = {119870},
  url = {http://www.sciencedirect.com/science/article/pii/S0017931019361927},
  doi = {10.1016/j.ijheatmasstransfer.2020.119870}
}
Haussmann M, Claro Berreta A, Lipeme Kouyi G, Riviere N, Nirschl H and Krause M (2019), "Large--eddy simulation coupled with wall models for turbulent channel flows at high Reynolds numbers with a lattice Boltzmann method --Application to Coriolis mass flowmeter", Computers & Mathematics with Applications. Vol. 78(10), pp. 3285-3302.
BibTeX:
@article{haussmann:19,
  author = {Haussmann, M. and Claro Berreta, A. and Lipeme Kouyi, G. and Riviere, N. and Nirschl, H. and Krause, M.J.},
  title = {Large--eddy simulation coupled with wall models for turbulent channel flows at high Reynolds numbers with a lattice Boltzmann method --Application to Coriolis mass flowmeter},
  journal = {Computers & Mathematics with Applications},
  year = {2019},
  volume = {78},
  number = {10},
  pages = {3285--3302},
  url = {http://www.sciencedirect.com/science/article/pii/S0898122119302494},
  doi = {10.1016/j.camwa.2019.04.033}
}
Haussmann M, Simonis S, Nirschl H and Krause M (2019), "Direct numerical simulation of decaying homogeneous isotropic turbulence -- numerical experiments on stability, consistency and accuracy of distinct lattice Boltzmann methods", International Journal of Modern Physics C. Vol. 30(09), pp. 1950074.
BibTeX:
@article{haussmann:19a,
  author = {Haussmann, M. and Simonis, S. and Nirschl, H. and Krause, M.J.},
  title = {Direct numerical simulation of decaying homogeneous isotropic turbulence -- numerical experiments on stability, consistency and accuracy of distinct lattice Boltzmann methods},
  journal = {International Journal of Modern Physics C},
  year = {2019},
  volume = {30},
  number = {09},
  pages = {1950074},
  url = {https://doi.org/10.1142/S0129183119500748},
  doi = {10.1142/S0129183119500748}
}
Haussmann M, Ries F, Jeppener-Haltenhoff J, Li Y, Schmidt M, Welch C, Illmann L, Böhm B, Nirschl H, Krause M and Sadiki A (2020), "Evaluation of a Near--Wall--Modeled Large Eddy Lattice Boltzmann Method for the Analysis of Complex Flows Relevant to IC Engines", Computation. Vol. 8(43)
BibTeX:
@article{haussmann:20,
  author = {Haussmann, M. and Ries, F. and Jeppener--Haltenhoff, J.B. and Li, Y. and Schmidt, M. and Welch, C. and Illmann, L. and Böhm, B. and Nirschl, H. and Krause, M.J. and Sadiki, A.},
  title = {Evaluation of a Near--Wall--Modeled Large Eddy Lattice Boltzmann Method for the Analysis of Complex Flows Relevant to IC Engines},
  journal = {Computation},
  year = {2020},
  volume = {8},
  number = {43},
  url = {https://doi.org/10.3390/computation8020043},
  doi = {10.3390/computation8020043}
}
Haussmann M, Hafen N, Raichle F, Trunk R, Nirschl H and Krause M (2020), "Galilean invariance study on different lattice Boltzmann fluid--solid interface approaches for vortex-induced vibrations", Computers & Mathematics with Applications. Vol. 80(5), pp. 671-691.
BibTeX:
@article{haussmann:20b,
  author = {Haussmann, M. and Hafen, N. and Raichle, F. and Trunk, R. and Nirschl, H. and Krause, M.J.},
  title = {Galilean invariance study on different lattice Boltzmann fluid--solid interface approaches for vortex-induced vibrations},
  journal = {Computers & Mathematics with Applications},
  year = {2020},
  volume = {80},
  number = {5},
  pages = {671--691},
  url = {http://www.sciencedirect.com/science/article/pii/S0898122120301693},
  doi = {10.1016/j.camwa.2020.04.022}
}
Henn T, Thäter G, Dörfler W, Nirschl H and Krause M (2016), "Parallel dilute particulate flow simulations in the human nasal cavity", Computers & Fluids. Vol. 124, pp. 197-207.
BibTeX:
@article{henn:16,
  author = {Henn, T. and Thäter, G. and Dörfler, W. and Nirschl, H. and Krause, M.J.},
  title = {Parallel dilute particulate flow simulations in the human nasal cavity},
  journal = {Computers & Fluids},
  year = {2016},
  volume = {124},
  pages = {197--207},
  url = {http://www.sciencedirect.com/science/article/pii/S0045793015002728},
  doi = {10.1016/j.compfluid.2015.08.002}
}
Höcker S, Trunk R, Dörfler W and Krause M (2018), "Towards the simulations of inertial dense particulate flows with a volume-averaged lattice Boltzmann method", Computers & Fluids. Vol. 166, pp. 152 - 162.
BibTeX:
@article{hoecker:18,
  author = {Höcker, S.B. and Trunk, R. and Dörfler, W. and Krause, M.J.},
  title = {Towards the simulations of inertial dense particulate flows with a volume-averaged lattice Boltzmann method},
  journal = {Computers & Fluids},
  year = {2018},
  volume = {166},
  pages = {152 - 162},
  url = {https://www.sciencedirect.com/science/article/pii/S0045793018300665},
  doi = {10.1016/j.compfluid.2018.02.011}
}
Klemens F, Schuhmann S, Guthausen G, Thäter G and Krause M (2018), "CFD-MRI: A coupled measurement and simulation approach for accurate fluid flow characterisation and domain identification", Computers & Fluids. Vol. 166, pp. 218 - 224.
BibTeX:
@article{klemens:18,
  author = {Klemens, F. and Schuhmann, S. and Guthausen, G. and Thäter, G. and Krause, M.J.},
  title = {CFD-MRI: A coupled measurement and simulation approach for accurate fluid flow characterisation and domain identification},
  journal = {Computers & Fluids},
  year = {2018},
  volume = {166},
  pages = {218 - 224},
  url = {https://www.sciencedirect.com/science/article/pii/S004579301830077X},
  doi = {10.1016/j.compfluid.2018.02.022}
}
Klemens K, Förster B, Dorn M, Thäter G and Krause M (2020), "Solving fluid flow domain identification problems with adjoint lattice Boltzmann methods", Computers & Mathematics with Applications. Vol. 79(1), pp. 17-33.
BibTeX:
@article{klemens:18a,
  author = {Klemens, K. and Förster,B and Dorn, M. and Thäter, G. and Krause, M.J.},
  title = {Solving fluid flow domain identification problems with adjoint lattice Boltzmann methods},
  journal = {Computers & Mathematics with Applications},
  year = {2020},
  volume = {79},
  number = {1},
  pages = {17--33},
  url = {http://www.sciencedirect.com/science/article/pii/S0898122118303754},
  doi = {10.1016/j.camwa.2018.07.010}
}
Klemens F, Schuhmann S, Balbierer R, Guthausen G, Nirschl H, Thäter G and Krause M (2020), "Noise reduction of flow MRI measurements using a lattice Boltzmann based topology optimisation approach", Computers & Fluids. Vol. 197, pp. 104391.
BibTeX:
@article{klemens:20,
  author = {Klemens, F. and Schuhmann, S. and Balbierer, R. and Guthausen, G. and Nirschl, H. and Thäter, G. and Krause, M.J.},
  title = {Noise reduction of flow MRI measurements using a lattice Boltzmann based topology optimisation approach},
  journal = {Computers & Fluids},
  year = {2020},
  volume = {197},
  pages = {104391},
  url = {http://www.sciencedirect.com/science/article/pii/S0045793019303494},
  doi = {10.1016/j.compfluid.2019.104391}
}
Klemens F (2020), "Combining computational fluid dynamics and magnetic resonance imaging data using lattice Boltzmann based topology optimisation"
BibTeX:
@article{klemens2020combining,
  author = {Klemens, Fabian},
  title = {Combining computational fluid dynamics and magnetic resonance imaging data using lattice Boltzmann based topology optimisation},
  year = {2020}
}
Heuveline V, Krause M and Latt J (2009), "Towards a Hybrid Parallelization of Lattice Boltzmann Methods", Computers & Mathematics with Applications. Vol. 58, pp. 1071-1080.
Comment: electronic; hardcopy
BibTeX:
@article{krause:09,
  author = {Heuveline, V. and Krause, M.J. and Latt, J.},
  title = {Towards a Hybrid Parallelization of Lattice Boltzmann Methods},
  journal = {Computers & Mathematics with Applications},
  year = {2009},
  volume = {58},
  pages = {1071--1080},
  url = {http://dx.doi.org/10.1016/j.camwa.2009.04.001},
  doi = {10.1016/j.camwa.2009.04.001}
}
Krause M, Gengenbach T, Mayer R, Zimney S and Heuveline V (2011), "How to Breathe Life into CT-Data", Computer Aided Medical Engineering. (4), pp. 29-33.
BibTeX:
@article{krause:11b,
  author = {Krause, M.J. and Gengenbach, T. and Mayer, R. and Zimney, S. and Heuveline, V.},
  title = {How to Breathe Life into CT-Data},
  journal = {Computer Aided Medical Engineering},
  year = {2011},
  number = {4},
  pages = {29--33}
}
Krause M, Thäter G and Heuveline V (2013), "Adjoint-based Fluid Flow Control and Optimisation with Lattice Boltzmann Methods", Computers & Mathematics with Applications. Vol. 65(6), pp. 945-960.
BibTeX:
@article{krause:12a,
  author = {Krause, M.J. and Thäter, G. and Heuveline, V.},
  title = {Adjoint-based Fluid Flow Control and Optimisation with Lattice Boltzmann Methods},
  journal = {Computers & Mathematics with Applications},
  year = {2013},
  volume = {65},
  number = {6},
  pages = {945--960},
  url = {http://www.sciencedirect.com/science/article/pii/S0898122112005421},
  doi = {10.1016/j.camwa.2012.08.007}
}
Krause M and Heuveline V (2013), "Parallel Fluid Flow Control and Optimisation with Lattice Boltzmann Methods and Automatic Differentiation", Computers and Fluids. Vol. 80(0), pp. 28-36.
BibTeX:
@article{krause:12b,
  author = {Krause, M.J. and Heuveline, V.},
  title = {Parallel Fluid Flow Control and Optimisation with Lattice Boltzmann Methods and Automatic Differentiation},
  journal = {Computers and Fluids},
  year = {2013},
  volume = {80},
  number = {0},
  pages = {28--36},
  url = {http://www.sciencedirect.com/science/article/pii/S0045793012002940?v=s5},
  doi = {10.1016/j.compfluid.2012.07.026}
}
Krause M, Klemens F, Henn T, Trunk R and Nirschl R (2017), "Particle flow simulations with homogenised lattice Boltzmann methods", Particuology., October, 2017. Vol. 34, pp. 1-13.
BibTeX:
@article{krause:17,
  author = {Krause, M.J. and Klemens, F. and Henn, T. and Trunk, R. and Nirschl, R.},
  title = {Particle flow simulations with homogenised lattice Boltzmann methods},
  journal = {Particuology},
  year = {2017},
  volume = {34},
  pages = {1--13},
  url = {http://www.sciencedirect.com/science/article/pii/S167420011730041X},
  doi = {10.1016/j.partic.2016.11.001}
}
Krause M, Kummerländer A, Avis S, Kusumaatmaja H, Dapelo D, Klemens F, Gaedtke M, Hafen N, Mink A, Trunk R, Marquardt J, Maier M, Haussmann M and Simonis S (2020), "OpenLB--Open source lattice Boltzmann code", Computers & Mathematics with Applications.
Abstract: We present the OpenLB package, a C++ library providing a flexible framework for lattice Boltzmann simulations. The code is publicly available and published under GNU GPLv2, which allows for adaption and implementation of additional models. The extensibility benefits from a modular code structure achieved e.g. by utilizing template meta-programming. The package covers various methodical approaches and is applicable to a wide range of transport problems (e.g. fluid, particulate and thermal flows). The built-in processing of the STL file format furthermore allows for the simple setup of simulations in complex geometries. The utilization of MPI as well as OpenMP parallelism enables the user to perform those simulations on large-scale computing clusters. It requires a minimal amount of dependencies and includes several benchmark cases and examples. The package presented here aims at providing an open access platform for both, applicants and developers, from academia as well as industry, which facilitates the extension of previous implementations and results to novel fields of application for lattice Boltzmann methods. OpenLB was tested and validated over several code reviews and publications. This paper summarizes the findings and gives a brief introduction to the underlying concepts as well as the design of the parallel data structure.
BibTeX:
@article{krause:20,
  author = {Krause, M.J. and Kummerländer, A. and Avis, S.J. and Kusumaatmaja, H. and Dapelo, D. and Klemens, F. and Gaedtke, M. and Hafen, N. and Mink, A. and Trunk, R. and Marquardt, J.E. and Maier, M.L. and Haussmann, M. and Simonis, S.},
  title = {OpenLB--Open source lattice Boltzmann code},
  journal = {Computers & Mathematics with Applications},
  year = {2020},
  url = {http://www.sciencedirect.com/science/article/pii/S0898122120301875},
  doi = {10.1016/j.camwa.2020.04.033}
}
Ligabue-Braun R, Borguesan B, Verli H, Krause M and Dorn M (2018), "Everyone Is a Protagonist: Residue Conformational Preferences in High-Resolution Protein Structures", Journal of Computational Biology., April, 2018. Vol. 25(4), pp. 451-465.
Abstract: Abstract In many structural bioinformatics problems, there is a broad range of unanswered questions about protein dynamics and amino acid properties. Proteins are not strictly static objects, but rather populate ensembles of conformations. One way to understand these particularities is to analyze the information available in experimental databases. The Ramachandran plot, despite being more than half a century old, remains an utterly useful tool in the study of protein conformation. Based on its assumptions, we inspected a large data set (11,130 protein structures, amounting to 5,255,768 residues) and discriminated the conformational preferences of each residue type regarding their secondary structure participation. These data were studied for phi aastexamsbsyamsfontsamssymbbmmathrsfspifontstmaryrdtextcompportland, xspaceamsmath, amsxtraupgreekempty10976document $$( φ )$$ document, psi aastexamsbsyamsfontsamssymbbmmathrsfspifontstmaryrdtextcompportland, xspaceamsmath, amsxtraupgreekempty10976document $$( ψ )$$ document, and side chain chi aastexamsbsyamsfontsamssymbbmmathrsfspifontstmaryrdtextcompportland, xspaceamsmath, amsxtraupgreekempty10976document $$( χ )$$ document angles, being presented in non-Ramachandranian plots. In the largest analysis of protein conformation made so far, we propose an original plot to depict conformational preferences in relation to different secondary structure elements. Despite confirming previous observations, our results strongly support a unique character for each residue type, whereas also reinforcing the observation that side chains have a major contribution to secondary structure and, by consequence, on protein conformation. This information can be further used in the development of more robust methods and computational strategies for structural bioinformatics problems.
BibTeX:
@article{ligabue:17,
  author = {Ligabue-Braun, R. and Borguesan, B. and Verli, H. and Krause, M.J. and Dorn, M.},
  title = {Everyone Is a Protagonist: Residue Conformational Preferences in High-Resolution Protein Structures},
  journal = {Journal of Computational Biology},
  year = {2018},
  volume = {25},
  number = {4},
  pages = {451--465},
  note = {PMID: 29267011},
  url = {https://doi.org/10.1089/cmb.2017.0182},
  doi = {10.1089/cmb.2017.0182}
}
Loewe A, Wilhelms M, Schmid J, Krause M, Fischer F, Thomas D, Scholz E, Dössel O and Seemann G (2016), "Parameter estimation of ion current formulations requires hybrid optimization approach to be both accurate and reliable", Frontiers in Bioengineering and Biotechnology. Vol. 3(209)
Abstract: Computational models of cardiac electrophysiology provided insights into arrhythmogenesis and paved the way toward tailored therapies in the last years. To fully leverage in silico models in future research, these models need to be adapted to reflect pathologies, genetic alterations, or pharmacological effects, however. A common approach is to leave the structure of established models unaltered and estimate the values of a set of parameters. Today high-throughput patch clamp data acquisition methods require robust, unsupervised algorithms that estimate parameters both accurately and reliably. In this work, two classes of optimization approaches are evaluated: gradient-based trust-region-reflective and derivative-free particle swarm algorithms. Using synthetic input data and different ion current formulations from the Courtemanche et al. electrophysiological model of human atrial myocytes, we show that neither of the two schemes alone succeeds to meet all requirements. Sequential combination of the two algorithms did improve the performance to some extent but not satisfactorily. Thus, we propose a novel hybrid approach coupling the two algorithms in each iteration. This hybrid approach yielded very accurate estimates with minimal dependency on the initial guess using synthetic input data for which a ground truth parameter set exists. When applied to measured data, the hybrid approach yielded the best fit, again with minimal variation. Using the proposed algorithm, a single run is sufficient to estimate the parameters. The degree of superiority over the other investigated algorithms in terms of accuracy and robustness depended on the type of current. In contrast to the non-hybrid approaches, the proposed method proved to be optimal for data of arbitrary signal to noise ratio. The hybrid algorithm proposed in this work provides an important tool to integrate experimental data into computational models both accurately and robustly allowing to assess the often non-intuitive consequences of ion channel-level changes on higher levels of integration.
BibTeX:
@article{loewe:16,
  author = {Loewe, A. and Wilhelms, M. and Schmid, J. and Krause, M.J. and Fischer, F. and Thomas, D. and Scholz, E.P. and Dössel, O. and Seemann, G.},
  title = {Parameter estimation of ion current formulations requires hybrid optimization approach to be both accurate and reliable},
  journal = {Frontiers in Bioengineering and Biotechnology},
  year = {2016},
  volume = {3},
  number = {209},
  url = {http://www.frontiersin.org/computational_physiology_and_medicine/10.3389/fbioe.2015.00209/abstract},
  doi = {10.3389/fbioe.2015.00209}
}
Maier M-L, Henn T, Thaeter G, Nirschl H and Krause MJ (2017), "Towards Validated Multiscale Simulation with a Two-Way Coupled LBM and DEM", Chemical Engineering & Technology., September, 2017. Vol. 40(9), pp. 1591-1598.
BibTeX:
@article{maier:17,
  author = {Maier, M.-L. and Henn, T. and Thaeter, G. and Nirschl, H. and Krause, M. J.},
  title = {Towards Validated Multiscale Simulation with a Two-Way Coupled LBM and DEM},
  journal = {Chemical Engineering & Technology},
  year = {2017},
  volume = {40},
  number = {9},
  pages = {1591--1598},
  url = {http://dx.doi.org/10.1002/ceat.201600547},
  doi = {10.1002/ceat.201600547}
}
Maier M-L, Milles S, Schuhmann S, Guthausen G, Nirschl H and Krause M (2018), "Fluid flow simulations verified by measurements to investigate adsorption processes in a static mixer", Computers & Mathematics with Applications. Vol. 76(11), pp. 2744-2757.
BibTeX:
@article{maier:18,
  author = {Maier, M.-L. and Milles, S. and Schuhmann, S. and Guthausen, G. and Nirschl, H. and Krause, M.J.},
  title = {Fluid flow simulations verified by measurements to investigate adsorption processes in a static mixer},
  journal = {Computers & Mathematics with Applications},
  year = {2018},
  volume = {76},
  number = {11},
  pages = {2744--2757},
  url = {http://www.sciencedirect.com/science/article/pii/S089812211830498X},
  doi = {10.1016/j.camwa.2018.08.066}
}
Mink A, Thäter G, Nirschl H and Krause M (2016), "A 3D Lattice Boltzmann Method for Light Simulation in Participating Media", Journal of Computational Science. Vol. 17, Part 2, pp. 431-437.
Abstract: Abstract In recent years, Lattice Boltzmann methods (LBM) have been extended to solve the radiative transport equation (RTE), which describes radiative transport through absorbing and scattering media. With the present work, a new approach for solving RTE\ by LBM, referred to as RTLBM, is proposed for D3Q7\ grids. Its derivation is strongly linked to the P1-method, which approximates the RTE\ by a macroscopic diffusion equation with an additional sink term. For the fist time, a comprehensive evaluation of an RTLBM\ is shown. First of all, it is shown by a Chapman--Enskog expansion, that the proposed RTLB\ equation solves the corresponding macroscopic target diffusion equation with additional sink term. Based on corresponding analytical solutions, a stringent and extensive numerical error analysis, with focus on grid convergence and grid independence, is presented. An experimental order of convergence of two is observed solving the steady-state diffusion equation with additional sink term.
BibTeX:
@article{mink:16,
  author = {Mink, A. and Thäter, G. and Nirschl, H. and Krause, M.J.},
  title = {A 3D Lattice Boltzmann Method for Light Simulation in Participating Media},
  journal = {Journal of Computational Science},
  year = {2016},
  volume = {17, Part 2},
  pages = {431--437},
  url = {http://www.sciencedirect.com/science/article/pii/S1877750316300357},
  doi = {10.1016/j.jocs.2016.03.014}
}
Mink A, McHardy C, Bressel L, Rauh C and Krause M (2020), "Radiative transfer lattice Boltzmann methods: 3D models and their performance in different regimes of radiative transfer", Journal of Quantitative Spectroscopy and Radiative Transfer. Vol. 243, pp. 106810.
BibTeX:
@article{mink:20,
  author = {Mink, A. and McHardy, C. and Bressel, L. and Rauh, C. and Krause, M.J.},
  title = {Radiative transfer lattice Boltzmann methods: 3D models and their performance in different regimes of radiative transfer},
  journal = {Journal of Quantitative Spectroscopy and Radiative Transfer},
  year = {2020},
  volume = {243},
  pages = {106810},
  url = {http://www.sciencedirect.com/science/article/pii/S0022407319308052},
  doi = {10.1016/j.jqsrt.2019.106810}
}
Mirzaee H, Henn T, Krause M, Goubergrits L, Schumann C, Neugebauer M, Kuehne T, Preusser T and Hennemuth A (2016), "MRI-based computational hemodynamics in patients with aortic coarctation using the lattice Boltzmann methods: Clinical validation study", Journal of Magnetic Resonance Imaging. Vol. 45(1), pp. 139-146.
BibTeX:
@article{mirzaee:16,
  author = {Mirzaee, H. and Henn, T. and Krause, M.J. and Goubergrits, L. and Schumann, C. and Neugebauer, M. and Kuehne, T. and Preusser, T. and Hennemuth, A.},
  title = {MRI-based computational hemodynamics in patients with aortic coarctation using the lattice Boltzmann methods: Clinical validation study},
  journal = {Journal of Magnetic Resonance Imaging},
  year = {2016},
  volume = {45},
  number = {1},
  pages = {139--146},
  url = {http://dx.doi.org/10.1002/jmri.25366},
  doi = {10.1002/jmri.25366}
}
Mohrhard M, Thäter G, Bludau J, Horvat B and Krause M (2019), "An Auto-Vecotorization Friendly Parallel Lattice Boltzmann Streaming Scheme for Direct Addressing", Computers & Fluids. Vol. 181, pp. 1-7.
Abstract: Lattice Boltzmann methods (LBM) are used for massively parallel computational fluid dynamics simulations since they are easily parallelizable with a perfectly parallel and local in space collision step and a streaming step that only transfers data between neighboring grid points. Current CPU hardware architectures focus on increasing parallelism through additional CPU cores and wider vector instruction sets. To benefit from these developments parallel LBM schemes need to be designed with these concepts of parallelism in mind. This paper presents a new easily automatically vectorizable LBM streaming scheme for directly addressed grids which is based on the A-A pattern streaming algorithm. Combined with several implementation techniques the new algorithm provides a speedup of more than three compared to an unvectorized implementation. The algorithm also provides implementation benefits compared to the A-A pattern algorithm.
BibTeX:
@article{mohrhard:19,
  author = {Mohrhard, M. and Thäter, G. and Bludau, J. and Horvat, B. and Krause, M.J.},
  title = {An Auto-Vecotorization Friendly Parallel Lattice Boltzmann Streaming Scheme for Direct Addressing},
  journal = {Computers & Fluids},
  year = {2019},
  volume = {181},
  pages = {1--7},
  url = {http://www.sciencedirect.com/science/article/pii/S0045793018308727},
  doi = {10.1016/j.compfluid.2019.01.001}
}
Nathen P, Gaudlitz D, Krause M and Adams N (2018), "On the Stability and Accuracy of the BGK, MRT and RLB Boltzmann Schemes for the Simulation of Turbulent Flows", Communications in Computational Physics., March, 2018. Vol. 23(3), pp. 846-876.
BibTeX:
@article{nathen:17,
  author = {Nathen, P. and Gaudlitz, D. and Krause, M.J. and Adams, N.A.},
  title = {On the Stability and Accuracy of the BGK, MRT and RLB Boltzmann Schemes for the Simulation of Turbulent Flows},
  journal = {Communications in Computational Physics},
  year = {2018},
  volume = {23},
  number = {3},
  pages = {846--876},
  doi = {10.4208/cicp.OA-2016-0229}
}
Nathen P, Haussmann M, Krause M and Adams N (2018), "Adaptive filtering for the simulation of turbulent flows with lattice Boltzmann methods", Computers & Fluids. Vol. 172, pp. 510 - 523.
BibTeX:
@article{nathen:18,
  author = {Nathen, P. and Haussmann, M. and Krause, M.J. and Adams, N.A.},
  title = {Adaptive filtering for the simulation of turbulent flows with lattice Boltzmann methods},
  journal = {Computers & Fluids},
  year = {2018},
  volume = {172},
  pages = {510 - 523},
  url = {http://www.sciencedirect.com/science/article/pii/S0045793018301464},
  doi = {10.1016/j.compfluid.2018.03.042}
}
Ross-Jones J, Gaedtke M, Sonnick S, Rädle M, Nirschl H and Krause M (2019), "Conjugate heat transfer through nano scale porous media to optimize vacuum insulation panels with lattice Boltzmann methods", Computers & Mathematics with Applications. Vol. 77, pp. 209-221.
BibTeX:
@article{rossjones:19,
  author = {Ross-Jones, J. and Gaedtke, M. and Sonnick, S. and Rädle, M. and Nirschl, H. and Krause, M.J.},
  title = {Conjugate heat transfer through nano scale porous media to optimize vacuum insulation panels with lattice Boltzmann methods},
  journal = {Computers & Mathematics with Applications},
  year = {2019},
  volume = {77},
  pages = {209--221},
  url = {http://www.sciencedirect.com/science/article/pii/S0898122118305352},
  doi = {10.1016/j.camwa.2018.09.023}
}
Ross-Jones J, Teumer T, Wunsch S, Petri L, Nirschl H, Krause M, Methner F-J and Rädle M (2020), "Feasibility Study for a Chemical Process Particle Size Characterization System for Explosive Environments Using Low Laser Power", Micromachines. Vol. 11(10)
BibTeX:
@article{rossjones:20,
  author = {Ross-Jones, J. and Teumer, T. and Wunsch, S. and Petri, L. and Nirschl, H. and Krause, M.J. and Methner, F.-J. and Rädle, M.},
  title = {Feasibility Study for a Chemical Process Particle Size Characterization System for Explosive Environments Using Low Laser Power},
  journal = {Micromachines},
  year = {2020},
  volume = {11},
  number = {10},
  url = {https://www.mdpi.com/2072-666X/11/10/911},
  doi = {10.3390/mi11100911}
}
Ross-Jones J, Gaedtke M, Sonnick S, Meier M, Rädle M, Nirschl H and Krause M (2021), "Pore-scale conjugate heat transfer simulations using lattice Boltzmann methods for industrial applications", Applied Thermal Engineering. Vol. 182, pp. 116073.
BibTeX:
@article{rossjones:21,
  author = {Ross-Jones, J. and Gaedtke, M. and Sonnick, S. and Meier, M. and Rädle, M. and Nirschl, H. and Krause, M.J.},
  title = {Pore-scale conjugate heat transfer simulations using lattice Boltzmann methods for industrial applications},
  journal = {Applied Thermal Engineering},
  year = {2021},
  volume = {182},
  pages = {116073},
  url = {http://www.sciencedirect.com/science/article/pii/S1359431120335535},
  doi = {10.1016/j.applthermaleng.2020.116073}
}
Simonis S, Frank M and Krause M (2020), "On relaxation systems and their relation to discrete velocity Boltzmann models for scalar advection--diffusion equations", Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences., June, 2020. Vol. 378(2175), pp. 20190400.
BibTeX:
@article{simonis:20,
  author = {Simonis, S. and Frank, M. and Krause, M.J.},
  title = {On relaxation systems and their relation to discrete velocity Boltzmann models for scalar advection--diffusion equations},
  journal = {Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences},
  year = {2020},
  volume = {378},
  number = {2175},
  pages = {20190400},
  url = {https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2019.0400},
  doi = {10.1098/rsta.2019.0400}
}
Simonis S, Klemens F, Hafen N, Dapelo D and Krause MJ (2020), "Lattice Boltzmann methods for homogenized governing equations in porous media— Part I: Unified homogenization of nonstationary Navier– Stokes equations for general porosity regimes", In preparation.
BibTeX:
@article{simonis:20a,
  author = {Simonis, S. and Klemens, F. and Hafen, N. and Dapelo, D. and Krause, M. J.},
  title = {Lattice Boltzmann methods for homogenized governing equations in porous media— Part I: Unified homogenization of nonstationary Navier– Stokes equations for general porosity regimes},
  journal = {In preparation},
  year = {2020}
}
Simonis S, Klemens F, Hafen N, Dapelo D and Krause MJ (2020), "Lattice Boltzmann methods for homogenized governing equations in porous media— Part II: Comparative analysis of lattice Boltzmann Methods for homogenized Navier– Stokes equations in porous media", In preparation.
BibTeX:
@article{simonis:20b,
  author = {Simonis, S. and Klemens, F. and Hafen, N. and Dapelo, D. and Krause, M. J.},
  title = {Lattice Boltzmann methods for homogenized governing equations in porous media— Part II: Comparative analysis of lattice Boltzmann Methods for homogenized Navier– Stokes equations in porous media},
  journal = {In preparation},
  year = {2020}
}
Sonnick S, Erlbeck L, Gaedtke M, Wunder F, Mayer C, Krause M, Nirschl H and Rädle M (2020), "Passive room conditioning using phase change materials--Demonstration of a long--term real size experiment", International Journal of Energy Research., April, 2020. Vol. 44(8), pp. 7047-7056.
BibTeX:
@article{sonnick:20,
  author = {Sonnick, S. and Erlbeck, L. and Gaedtke, M. and Wunder, F. and Mayer, C. and Krause, M.J. and Nirschl, H. and Rädle, M.},
  title = {Passive room conditioning using phase change materials--Demonstration of a long--term real size experiment},
  journal = {International Journal of Energy Research},
  year = {2020},
  volume = {44},
  number = {8},
  pages = {7047--7056},
  url = {https://onlinelibrary.wiley.com/doi/abs/10.1002/er.5406},
  doi = {10.1002/er.5406}
}
Trunk R, Henn T, Dörfler W, Nirschl H and Krause M (2016), "Inertial Dilute Particulate Fluid Flow Simulations with an Euler-Euler Lattice Boltzmann Method", Journal of Computational Science. Vol. 17, Part 2, pp. 438-445.
BibTeX:
@article{trunk:16,
  author = {Trunk, R. and Henn, T. and Dörfler, W. and Nirschl, H. and Krause, M.J.},
  title = {Inertial Dilute Particulate Fluid Flow Simulations with an Euler-Euler Lattice Boltzmann Method},
  journal = {Journal of Computational Science},
  year = {2016},
  volume = {17, Part 2},
  pages = {438--445},
  url = {http://www.sciencedirect.com/science/article/pii/S1877750316300345},
  doi = {10.1016/j.jocs.2016.03.013}
}
Trunk R, Marquardt J, Thäter G, Nirschl H and Krause M (2018), "Towards the Simulation of arbitrarily shaped 3D particles using a homogenised lattice Boltzmann method", Computers & Fluids. (172), pp. 621-631.
BibTeX:
@article{trunk:18,
  author = {Trunk, R. and Marquardt, J. and Thäter, G. and Nirschl, H. and Krause, M.J.},
  title = {Towards the Simulation of arbitrarily shaped 3D particles using a homogenised lattice Boltzmann method},
  journal = {Computers & Fluids},
  year = {2018},
  number = {172},
  pages = {621--631},
  url = {http://www.sciencedirect.com/science/article/pii/S0045793018300823},
  doi = {10.1016/j.compfluid.2018.02.027}
}
Heuveline V and Krause M (2006), "Biotechnologie und Numerik auf Hochleistungsrechnern: ein zukünftiges Gespann in Baden-Württemberg, Marktstudie für HWW GmbH"
BibTeX:
@booklet{krause:06,
  author = {Heuveline, V. and Krause, M.J.},
  title = {Biotechnologie und Numerik auf Hochleistungsrechnern: ein zukünftiges Gespann in Baden-Württemberg, Marktstudie für HWW GmbH},
  year = {2006}
}
Krause M, Mink A and Weisbrod P (2015), "Charakterisierung von durchströmten Gefäßen und der Hämodynamik mittels modell- und simulationsbasierter Fluss-MRI (CFD-MRI)" , pp. 291 - 293. Heidelberger Akademie der Wissenschaften Jahrbuch 2014.
BibTeX:
@inbook{krause:15,
  author = {Krause, M.J. and Mink, A. and Weisbrod, P.},
  title = {Charakterisierung von durchströmten Gefäßen und der Hämodynamik mittels modell- und simulationsbasierter Fluss-MRI (CFD-MRI)},
  publisher = {Heidelberger Akademie der Wissenschaften Jahrbuch 2014},
  year = {2015},
  pages = {291 - 293}
}
Krause M, Maier M-L and Mink A (2016), "Charakterisierung von durchströmten Gefäßen und der Hämodynamik mittels modell- und simulationsbasierter Fluss-MRI (CFD-MRI): Grundlegende Methodenentwicklung zur optimal-kalibrierten CFD-Simulation" , pp. 301 - 304. Heidelberger Akademie der Wissenschaften Jahrbuch 2015.
BibTeX:
@inbook{krause:16,
  author = {Krause, M.J. and Maier, M.-L. and Mink, A.},
  title = {Charakterisierung von durchströmten Gefäßen und der Hämodynamik mittels modell- und simulationsbasierter Fluss-MRI (CFD-MRI): Grundlegende Methodenentwicklung zur optimal-kalibrierten CFD-Simulation},
  publisher = {Heidelberger Akademie der Wissenschaften Jahrbuch 2015},
  year = {2016},
  pages = {301 - 304}
}
Krause M and Becker S (2017), "Fazit -- Messen und Verstehen der Welt durch Wissenschaft", In Messen und Verstehen in der Wissenschaft: Interdisziplinäre Ansätze. Wiesbaden , pp. 277-286. Springer Fachmedien Wiesbaden.
BibTeX:
@inbook{krause:17b,
  author = {Krause, M.J. and Becker, S.},
  editor = {Schweiker, Marcel and Hass, Joachim and Novokhatko, Anna and Halbleib, Roxana},
  title = {Fazit -- Messen und Verstehen der Welt durch Wissenschaft},
  booktitle = {Messen und Verstehen in der Wissenschaft: Interdisziplinäre Ansätze},
  publisher = {Springer Fachmedien Wiesbaden},
  year = {2017},
  pages = {277--286},
  url = {http://dx.doi.org/10.1007/978-3-658-18354-7_18},
  doi = {10.1007/978-3-658-18354-7_18}
}
Krause M (2017), "Durch Numerische Simulation zur wissenschaftlichen Erkenntnis", In Messen und Verstehen in der Wissenschaft: Interdisziplinäre Ansätze. Wiesbaden , pp. 237-253. Springer Fachmedien Wiesbaden.
BibTeX:
@inbook{krause:17c,
  author = {Krause, M.J.},
  editor = {Schweiker, Marcel and Hass, Joachim and Novokhatko, Anna and Halbleib, Roxana},
  title = {Durch Numerische Simulation zur wissenschaftlichen Erkenntnis},
  booktitle = {Messen und Verstehen in der Wissenschaft: Interdisziplinäre Ansätze},
  publisher = {Springer Fachmedien Wiesbaden},
  year = {2017},
  pages = {237--253},
  url = {http://dx.doi.org/10.1007/978-3-658-18354-7_16},
  doi = {10.1007/978-3-658-18354-7_16}
}
Krause M, Mink A, Förster B and Klemens F (2017), "Charakterisierung von durchströmten Gefäßen und der Hämodynamik mittels modell- und simulationsbasierter Fluss-MRI (CFD-MRI): Verbesserung des Modellsystems und erste Machbarkeitsstudie zur Anwendung in der Medizin" , pp. 269 - 272. Heidelberger Akademie der Wissenschaften Jahrbuch 2016.
BibTeX:
@inbook{krause:17d,
  author = {Krause, M.J. and Mink, A. and Förster, B. and Klemens, F.},
  title = {Charakterisierung von durchströmten Gefäßen und der Hämodynamik mittels modell- und simulationsbasierter Fluss-MRI (CFD-MRI): Verbesserung des Modellsystems und erste Machbarkeitsstudie zur Anwendung in der Medizin},
  publisher = {Heidelberger Akademie der Wissenschaften Jahrbuch 2016},
  year = {2017},
  pages = {269 - 272}
}
Krause M, Klemens F and Mink A (2018), "Charakterisierung von durchströmten Gefäßen und der Hämodynamik mittels modell- und simulationsbasierter Fluss-MRI (CFD-MRI): Qualitative Analyse des Genauigkeitsgewinns der kombinierten Methode" , pp. 338 - 342. Heidelberger Akademie der Wissenschaften Jahrbuch 2017.
BibTeX:
@inbook{krause:18a,
  author = {Krause, M.J. and Klemens, F. and Mink, A.},
  title = {Charakterisierung von durchströmten Gefäßen und der Hämodynamik mittels modell- und simulationsbasierter Fluss-MRI (CFD-MRI): Qualitative Analyse des Genauigkeitsgewinns der kombinierten Methode},
  publisher = {Heidelberger Akademie der Wissenschaften Jahrbuch 2017},
  year = {2018},
  pages = {338 - 342}
}
Krause MJ, Klemens F, Mink A and Jeppener-Haltenhoff J (2019), "Charakterisierung von durchströmten Gefäßen und der Hämodynamik mittels modell- und simulationsbasierter Fluss-MRI (CFD-MRI): Validierung der Wandschubspannungsberechnung und Anwendung auf medizinisches Einsatzgebiet" , pp. 373-376. Heidelberger Akademie der Wissenschaften Jahrbuch 2018.
BibTeX:
@inbook{krause:19,
  author = {Krause, M. J. and Klemens, F. and Mink, A. and Jeppener--Haltenhoff, J.},
  title = {Charakterisierung von durchströmten Gefäßen und der Hämodynamik mittels modell- und simulationsbasierter Fluss-MRI (CFD-MRI): Validierung der Wandschubspannungsberechnung und Anwendung auf medizinisches Einsatzgebiet},
  publisher = {Heidelberger Akademie der Wissenschaften Jahrbuch 2018},
  year = {2019},
  pages = {373--376}
}
Krause M, Mink A, Weisbrod P, Klemens F, Jeppener-Haltenhoff J and Förster B (2020), "Charakterisierung von durchströmten Gefäßen und der Hämodynamik mittels modell- und simulationsbasierter Fluss-MRI (CFD-MRI)" , pp. 380-383. Heidelberger Akademie der Wissenschaften Jahrbuch 2019.
BibTeX:
@inbook{krause:20a,
  author = {Krause, M.J. and Mink, A. and Weisbrod, P. and Klemens, F. and Jeppener--Haltenhoff, J. and Förster, B.},
  title = {Charakterisierung von durchströmten Gefäßen und der Hämodynamik mittels modell- und simulationsbasierter Fluss-MRI (CFD-MRI)},
  publisher = {Heidelberger Akademie der Wissenschaften Jahrbuch 2019},
  year = {2020},
  pages = {380--383}
}
Fietz J, Krause M, Schulz C, Sanders P and Heuveline V (2012), "Optimized Hybrid Parallel Lattice Boltzmann Fluid Flow Simulations on Complex Geometries", In Euro-Par 2012 Parallel Processing. Vol. 7484, pp. 818-829. Springer Berlin Heidelberg.
BibTeX:
@incollection{fietz:12,
  author = {Fietz, J. and Krause, M.J. and Schulz, C. and Sanders, P. and Heuveline, V.},
  editor = {Kaklamanis, C. and Papatheodorou, T. and Spirakis, P.G.},
  title = {Optimized Hybrid Parallel Lattice Boltzmann Fluid Flow Simulations on Complex Geometries},
  booktitle = {Euro-Par 2012 Parallel Processing},
  publisher = {Springer Berlin Heidelberg},
  year = {2012},
  volume = {7484},
  pages = {818-829},
  url = {http://dx.doi.org/10.1007/978-3-642-32820-6_81},
  doi = {10.1007/978-3-642-32820-6_81}
}
Henn T, Krause M, Ritterbusch S and Heuveline V (2012), "Lattice Boltzmann Method Meets Aortic Coarctation Model", In Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2012. Vol. 7746, pp. 34-43. Springer Berlin Heidelberg.
BibTeX:
@incollection{henn:12,
  author = {Henn, T. and Krause, M.J. and Ritterbusch, S. and Heuveline, V.},
  editor = {Camara, O. and Mansi, T. and Pop, M. and Rhode, K. and Sermesant, M. and Young, A.},
  title = {Lattice Boltzmann Method Meets Aortic Coarctation Model},
  booktitle = {Medical Image Computing and Computer-Assisted Intervention -- MICCAI 2012},
  publisher = {Springer Berlin Heidelberg},
  year = {2012},
  volume = {7746},
  pages = {34--43}
}
Krause M, Gengenbach T and Heuveline V (2011), "Hybrid Parallel Simulations of Fluid Flows in Complex Geometries: Application to the Human Lungs", In Euro-Par 2010 Parallel Processing Workshops. Vol. 6586, pp. 209-216. Springer Berlin / Heidelberg.
BibTeX:
@incollection{krause:10a,
  author = {Krause, M.J. and Gengenbach, T. and Heuveline, V.},
  editor = {Guarracino, M. and Vivien, F. and Traeff, J. and Cannatoro, M. and Danelutto, M. and Hast, A. and Perla, F. and Knuepfer, A. and Di Martino, B. and Alexander, M.},
  title = {Hybrid Parallel Simulations of Fluid Flows in Complex Geometries: Application to the Human Lungs},
  booktitle = {Euro-Par 2010 Parallel Processing Workshops},
  publisher = {Springer Berlin / Heidelberg},
  year = {2011},
  volume = {6586},
  pages = {209-216},
  url = {http://dx.doi.org/10.1007/978-3-642-21878-1_26}
}
Krause M, Förster B, Mink A and Nirschl H (2016), "Towards Solving Fluid Flow Domain Identification Problems with Adjoint Lattice Boltzmann Methods", In High Performance Computing in Science and Engineering’ 16. , pp. 337-353. Springer.
BibTeX:
@incollection{krause:16a,
  author = {Krause, M.J. and Förster, B. and Mink, A. and Nirschl, H.},
  title = {Towards Solving Fluid Flow Domain Identification Problems with Adjoint Lattice Boltzmann Methods},
  booktitle = {High Performance Computing in Science and Engineering’ 16},
  publisher = {Springer},
  year = {2016},
  pages = {337--353}
}
Nadim N, Chandratilleke T and Krause M (2016), "LBM-LES Modelling of Low Reynolds Number Turbulent Flow Over NACA0012 Aerofoil", In Fluid-Structure-Sound Interactions and Control. , pp. 205-210. Springer Berlin Heidelberg.
BibTeX:
@incollection{nadim:16,
  author = {Nadim, N. and Chandratilleke, T.T. and Krause, M.J.},
  editor = {Zhou, Y. and Lucey, A.D. and Liu, Y. and Huang, L.},
  title = {LBM-LES Modelling of Low Reynolds Number Turbulent Flow Over NACA0012 Aerofoil},
  booktitle = {Fluid-Structure-Sound Interactions and Control},
  publisher = {Springer Berlin Heidelberg},
  year = {2016},
  pages = {205-210},
  url = {http://dx.doi.org/10.1007/978-3-662-48868-3_33},
  doi = {10.1007/978-3-662-48868-3_33}
}
Heuveline V and Krause M (2011), "OpenLB: Towards an Efficient Parallel Open Source Library for Lattice Boltzmann Fluid Flow Simulations", In PARA'08 Workshop on State-of-the-Art in Scientific and Parallel Computing, May 13-16, 2008. (6126, 6127)
BibTeX:
@inproceedings{krause:08,
  author = {Heuveline, V. and Krause, M.J.},
  editor = {A.C. Elster, J. Dongarra and J. Wasniewski},
  title = {OpenLB: Towards an Efficient Parallel Open Source Library for Lattice Boltzmann Fluid Flow Simulations},
  booktitle = {PARA'08 Workshop on State-of-the-Art in Scientific and Parallel Computing, May 13-16, 2008},
  year = {2011},
  number = {6126, 6127},
  note = {Published online 2011, https://para08.idi.ntnu.no/docs/submission37.pdf},
  url = {https://para08.idi.ntnu.no/docs/submission37.pdf}
}
Narloch P, Krause M and Dorn M (2020), "Multi-Objective Differential Evolution Algorithms for the Protein Structure Prediction Problem", In IEEE Congress on Evolutionary Computation (CEC).
BibTeX:
@inproceedings{narloch:20,
  author = {Narloch, P.H. and Krause, M.J. and Dorn, M.},
  title = {Multi-Objective Differential Evolution Algorithms for the Protein Structure Prediction Problem},
  booktitle = {IEEE Congress on Evolutionary Computation (CEC)},
  year = {2020}
}
Nathen P, Gaudlitz D, Krause M and Kratzke J (2013), "An extension of the Lattice Boltzmann Method for simulating turbulent flows around rotating geometries of arbitrary shape", In 21st AIAA Computational Fluid Dynamics Conference, San Diego.
BibTeX:
@inproceedings{nathen:13,
  author = {Nathen, P. and Gaudlitz, D. and Krause, M.J. and Kratzke, J.},
  title = {An extension of the Lattice Boltzmann Method for simulating turbulent flows around rotating geometries of arbitrary shape},
  booktitle = {21st AIAA Computational Fluid Dynamics Conference, San Diego},
  year = {2013},
  url = {http://dx.doi.org/10.2514/6.2013-2573},
  doi = {10.2514/6.2013-2573}
}
Römer U, Kuhs C, Krause M and Fidlin A (2016), "Simultaneous optimization of gait and design parameters for bipedal robots", In 2016 IEEE International Conference on Robotics and Automation (ICRA)., May, 2016. , pp. 1374-1381.
BibTeX:
@inproceedings{roemer:16,
  author = {Römer, U. and Kuhs, C. and Krause, M.J. and Fidlin, A.},
  title = {Simultaneous optimization of gait and design parameters for bipedal robots},
  booktitle = {2016 IEEE International Conference on Robotics and Automation (ICRA)},
  year = {2016},
  pages = {1374-1381},
  doi = {10.1109/ICRA.2016.7487271}
}
Wilhelms M, Schmid J, Krause M, Konrad N, Maier J, Scholz E, Heuveline V, Dossel O and Seemann G (2012), "Calibration of human cardiac ion current models to patch clamp measurement data", In Computing in Cardiology (CinC), 2012. Vol. 39, pp. 229-232.
BibTeX:
@inproceedings{wilhelms:12,
  author = {Wilhelms, M. and Schmid, J. and Krause, M.J. and Konrad, N. and Maier, J. and Scholz, E.P. and Heuveline, V. and Dossel, O. and Seemann, G.},
  title = {Calibration of human cardiac ion current models to patch clamp measurement data},
  booktitle = {Computing in Cardiology (CinC), 2012},
  year = {2012},
  volume = {39},
  pages = {229-232}
}
Gengenbach T, Krause M and Heuveline V (2011), "Numerical Simulation of the Human Lung: A Two--scale Approach", EMCL Preprint Series.
BibTeX:
@misc{gengenbach:11,
  author = {Gengenbach, T. and Krause, M.J. and Heuveline, V.},
  title = {Numerical Simulation of the Human Lung: A Two--scale Approach},
  howpublished = {EMCL Preprint Series},
  year = {2011},
  number = {11},
  note = {http://dx.doi.org/10.11588/emclpp.2011.11.11687},
  url = {http://dx.doi.org/10.11588/emclpp.2011.11.11687}
}
Haussmann M, Reinshaus P, Simonis S, Nirschl H and Krause M (2020), "Fluid--structure Interaction Simulation of a Coriolis Mass Flowmeter Using a Lattice Boltzmann Method".
BibTeX:
@misc{haussmann:20a,
  author = {Haussmann, M. and Reinshaus, P. and Simonis, S. and Nirschl, H. and Krause, M.J.},
  title = {Fluid--structure Interaction Simulation of a Coriolis Mass Flowmeter Using a Lattice Boltzmann Method},
  year = {2020},
  url = {https://arxiv.org/pdf/2005.04070.pdf}
}
Krause M, Gengenbach T, Mayer R, Zimney S and Heuveline V (2011), "A Preprocessing Approach for Innovative Patient-specific Intranasal Flow Simulations", EMCL Preprint Series.
BibTeX:
@misc{krause:11a,
  author = {Krause, M.J. and Gengenbach, T. and Mayer, R. and Zimney, S. and Heuveline, V.},
  title = {A Preprocessing Approach for Innovative Patient-specific Intranasal Flow Simulations},
  howpublished = {EMCL Preprint Series},
  year = {2011},
  number = {07},
  note = {http://dx.doi.org/10.11588/emclpp.2011.07.11691},
  url = {http://dx.doi.org/10.11588/emclpp.2011.07.11691}
}
Krause M (2010), "Fluid Flow Simulation and Optimisation with Lattice Boltzmann Methods on High Performance Computers: Application to the Human Respiratory System". Thesis at: Karlsruhe Institute of Technology (KIT), Universität Karlsruhe (TH). Kaiserstraße 12, 76131 Karlsruhe, Germany, July, 2010.
BibTeX:
@phdthesis{krause:10b,
  author = {Krause, M.J.},
  title = {Fluid Flow Simulation and Optimisation with Lattice Boltzmann Methods on High Performance Computers: Application to the Human Respiratory System},
  school = {Karlsruhe Institute of Technology (KIT), Universität Karlsruhe (TH)},
  year = {2010},
  note = {http://digbib.ubka.uni-karlsruhe.de/volltexte/1000019768},
  url = {http://digbib.ubka.uni-karlsruhe.de/volltexte/1000019768}
}
Krause M, Fietz J, Zeltmann U, Wlozka M, Baumann M and Bockelmann H (2010), "OpenGPI Release 0.2: An Open and Generic Parameter Interface", August, 2010. Zenodo.
BibTeX:
@software{ogpi02,
  author = {Krause, M.J. and Fietz, J. and Zeltmann, U. and Wlozka, M. and Baumann, M. and Bockelmann, H.},
  title = {OpenGPI Release 0.2: An Open and Generic Parameter Interface},
  publisher = {Zenodo},
  year = {2010},
  url = {https://doi.org/10.5281/zenodo.3627128},
  doi = {10.5281/zenodo.3627128}
}
Krause M, Bogutzki N and Mink A (2016), "OpenGPI Release 0.3: An Open and Generic Parameter Interface", December, 2016. Zenodo.
BibTeX:
@software{ogpi03,
  author = {Krause, M.J. and Bogutzki, N. and Mink, A.},
  title = {OpenGPI Release 0.3: An Open and Generic Parameter Interface},
  publisher = {Zenodo},
  year = {2016},
  url = {https://doi.org/10.5281/zenodo.3629104},
  doi = {10.5281/zenodo.3629104}
}
Krause M, Bogutzki N and Mink A (2017), "OpenGPI Release 0.4: An Open and Generic Parameter Interface", March, 2017. Zenodo.
BibTeX:
@software{ogpi04,
  author = {Krause, M.J. and Bogutzki, N. and Mink, A.},
  title = {OpenGPI Release 0.4: An Open and Generic Parameter Interface},
  publisher = {Zenodo},
  year = {2017},
  url = {https://doi.org/10.5281/zenodo.3629111},
  doi = {10.5281/zenodo.3629111}
}
Latt J and Krause M (2007), "OpenLB Release 0.3: Open Source Lattice Boltzmann Code", July, 2007. Zenodo.
BibTeX:
@software{olb03,
  author = {Latt, J. and Krause, M.J.},
  title = {OpenLB Release 0.3: Open Source Lattice Boltzmann Code},
  publisher = {Zenodo},
  year = {2007},
  url = {https://doi.org/10.5281/zenodo.3625765},
  doi = {10.5281/zenodo.3625765}
}
Latt J and Krause M (2008), "OpenLB Release 0.4: Open Source Lattice Boltzmann Code", January, 2008. Zenodo.
BibTeX:
@software{olb04,
  author = {Latt, J. and Krause, M.J.},
  title = {OpenLB Release 0.4: Open Source Lattice Boltzmann Code},
  publisher = {Zenodo},
  year = {2008},
  url = {https://doi.org/10.5281/zenodo.3625909},
  doi = {10.5281/zenodo.3625909}
}
Latt J, Krause M, Malaspinas O and Stahl B (2008), "OpenLB Release 0.5: Open Source Lattice Boltzmann Code", May, 2008. Zenodo.
BibTeX:
@software{olb05,
  author = {Latt, J. and Krause, M.J. and Malaspinas, O. and Stahl, B.},
  title = {OpenLB Release 0.5: Open Source Lattice Boltzmann Code},
  publisher = {Zenodo},
  year = {2008},
  url = {https://doi.org/10.5281/zenodo.3625925},
  doi = {10.5281/zenodo.3625925}
}
Krause M, Zimny S, Henn T and Fietz J (2011), "OpenLB Release 0.6: Open Source Lattice Boltzmann Code", May, 2011. Zenodo.
BibTeX:
@software{olb06,
  author = {Krause, M.J. and Zimny, S. and Henn, T. and Fietz, J.},
  title = {OpenLB Release 0.6: Open Source Lattice Boltzmann Code},
  publisher = {Zenodo},
  year = {2011},
  url = {https://doi.org/10.5281/zenodo.3625929},
  doi = {10.5281/zenodo.3625929}
}
Krause M, Henn T, Baron L, Kratzke J, Fietz J and Dornieden T (2012), "OpenLB Release 0.7: Open Source Lattice Boltzmann Code", February, 2012. Zenodo.
BibTeX:
@software{olb07,
  author = {Krause, M.J. and Henn, T. and Baron, L. and Kratzke, J. and Fietz, J. and Dornieden, T.},
  title = {OpenLB Release 0.7: Open Source Lattice Boltzmann Code},
  publisher = {Zenodo},
  year = {2012},
  url = {https://doi.org/10.5281/zenodo.3625936},
  doi = {10.5281/zenodo.3625936}
}
Krause M, Henn T, Baron L, Mink A, Weisbrod P, Nathen P and Zahnd G (2013), "OpenLB Release 0.8: Open Source Lattice Boltzmann Code", November, 2013. Zenodo.
BibTeX:
@software{olb08,
  author = {Krause, M.J. and Henn, T. and Baron, L. and Mink, A. and Weisbrod, P. and Nathen, P. and Zahnd, G.},
  title = {OpenLB Release 0.8: Open Source Lattice Boltzmann Code},
  publisher = {Zenodo},
  year = {2013},
  url = {https://doi.org/10.5281/zenodo.3625938},
  doi = {10.5281/zenodo.3625938}
}
Krause M, Henn T, Mink A, Trunk R, Weisbrod P, Nathen P, Klemens F and Maier M-L (2015), "OpenLB Release 0.9: Open Source Lattice Boltzmann Code", March, 2015. Zenodo.
BibTeX:
@software{olb09,
  author = {Krause, M.J. and Henn, T. and Mink, A. and Trunk, R. and Weisbrod, P. and Nathen, P. and Klemens, F. and Maier, M.-L.},
  title = {OpenLB Release 0.9: Open Source Lattice Boltzmann Code},
  publisher = {Zenodo},
  year = {2015},
  url = {https://doi.org/10.5281/zenodo.3625941},
  doi = {10.5281/zenodo.3625941}
}
Krause M, Henn T, Mink A, Trunk R, Weisbrod P, Nathen P, Klemens F and Maier M-L (2016), "OpenLB Release 1.0: Open Source Lattice Boltzmann Code", March, 2016. Zenodo.
BibTeX:
@software{olb10,
  author = {Krause, M.J. and Henn, T. and Mink, A. and Trunk, R. and Weisbrod, P. and Nathen, P. and Klemens, F. and Maier, M.-L.},
  title = {OpenLB Release 1.0: Open Source Lattice Boltzmann Code},
  publisher = {Zenodo},
  year = {2016},
  url = {https://doi.org/10.5281/zenodo.3625943},
  doi = {10.5281/zenodo.3625943}
}
Krause M, Henn T, Mink A, Trunk R, Nathen P, Klemens F, Maier M-L, Mohrhard M, Claro Barreto A, Haußmann M, Gaedtke M and Ross-Jones J (2017), "OpenLB Release 1.1: Open Source Lattice Boltzmann Code", April, 2017. Zenodo.
BibTeX:
@software{olb11,
  author = {Krause, M.J. and Henn, T. and Mink, A. and Trunk, R. and Nathen, P. and Klemens, F. and Maier, M.-L. and Mohrhard, M. and Claro Barreto, A. and Haußmann, M. and Gaedtke, M. and Ross-Jones, J.},
  title = {OpenLB Release 1.1: Open Source Lattice Boltzmann Code},
  publisher = {Zenodo},
  year = {2017},
  url = {https://doi.org/10.5281/zenodo.3625955},
  doi = {10.5281/zenodo.3625955}
}
Krause M, Mink A, Trunk R, Klemens F, Maier M-L, Mohrhard M, Claro Barreto A, Haußmann M, Gaedtke M and Ross-Jones J (2018), "OpenLB Release 1.2: Open Source Lattice Boltzmann Code", February, 2018. Zenodo.
BibTeX:
@software{olb12,
  author = {Krause, M.J. and Mink, A. and Trunk, R. and Klemens, F. and Maier, M.-L. and Mohrhard, M. and Claro Barreto, A. and Haußmann, M. and Gaedtke, M. and Ross-Jones, J.},
  title = {OpenLB Release 1.2: Open Source Lattice Boltzmann Code},
  publisher = {Zenodo},
  year = {2018},
  url = {https://doi.org/10.5281/zenodo.3625960},
  doi = {10.5281/zenodo.3625960}
}
Krause M, Avis S, Dapalo D, Hafen N, Haußmann M, Gaedtke M, Klemens F, Kummerländer A, Maier M-L, Mink A, Ross-Jones J, Simonis S and Trunk R (2019), "OpenLB Release 1.3: Open Source Lattice Boltzmann Code", May, 2019. Zenodo.
BibTeX:
@software{olb13,
  author = {Krause, M.J. and Avis, S. and Dapalo, D. and Hafen, N and Haußmann, M. and Gaedtke, M. and Klemens, F. and Kummerländer, A. and Maier, M.-L. and Mink, A. and Ross-Jones, J. and Simonis, S. and Trunk, R.},
  title = {OpenLB Release 1.3: Open Source Lattice Boltzmann Code},
  publisher = {Zenodo},
  year = {2019},
  url = {https://doi.org/10.5281/zenodo.3625967},
  doi = {10.5281/zenodo.3625967}
}
Krause M, Avis S, Kusumaatmaja H, Dapalo D, Gaedtke M, Hafen N, Haußmann M, Jeppener-Haltenhoff J, Kronberg L, Kummerländer A, Marquardt J, Pertzel T, Simonis S, Trunk R, Wu M and Zarth A (2020), "OpenLB Release 1.4: Open Source Lattice Boltzmann Code", November, 2020. Zenodo.
BibTeX:
@software{olb14,
  author = {Krause, M.J. and Avis, S. and Kusumaatmaja, H. and Dapalo, D. and Gaedtke, M. and Hafen, N. and Haußmann, M. and Jeppener-Haltenhoff, Jonathan and Kronberg, L. and Kummerländer, A. and Marquardt, J.E. and Pertzel, T. and Simonis, S. and Trunk, R. and Wu, M. and Zarth, A.},
  title = {OpenLB Release 1.4: Open Source Lattice Boltzmann Code},
  publisher = {Zenodo},
  year = {2020},
  url = {https://doi.org/10.5281/zenodo.4279263},
  doi = {10.5281/zenodo.4279263}
}
Fuchs S, Dittler A and Krause MJ (2020), "Um bis zu 95% können Mund-Nasen-Masken das Corona-Ansteckungsrisiko reduzieren -- Wissenschaftler am KIT haben die Ausbreitung in geschlossenen Räumen untersucht -- Campus-Report am 11.08.2020"
BibTeX:
@video{fuchs:20,
  author = {Fuchs, S. and Dittler, A. and Krause, M. J.},
  title = {Um bis zu 95% können Mund-Nasen-Masken das Corona-Ansteckungsrisiko reduzieren -- Wissenschaftler am KIT haben die Ausbreitung in geschlossenen Räumen untersucht -- Campus-Report am 11.08.2020},
  year = {2020},
  doi = {10.5445/IR/1000122509}
}