OpenLB 1.7
Loading...
Searching...
No Matches
Public Types | Public Member Functions | List of all members
olb::EntropicDynamics< T, DESCRIPTOR, MOMENTA > Class Template Reference

Implementation of the entropic collision step. More...

#include <entropicDynamics.h>

+ Inheritance diagram for olb::EntropicDynamics< T, DESCRIPTOR, MOMENTA >:
+ Collaboration diagram for olb::EntropicDynamics< T, DESCRIPTOR, MOMENTA >:

Public Types

template<typename M >
using exchange_momenta = EntropicDynamics<T,DESCRIPTOR,M>
 
- Public Types inherited from olb::dynamics::CustomCollision< T, DESCRIPTOR, MOMENTA >
using value_t = T
 
using descriptor_t = DESCRIPTOR
 
using MomentaF = typename MOMENTA::template type<DESCRIPTOR>
 
- Public Types inherited from olb::Dynamics< T, DESCRIPTOR >
using value_t = T
 
using descriptor_t = DESCRIPTOR
 

Public Member Functions

 EntropicDynamics (T omega_)
 Constructor.
 
computeEquilibrium (int iPop, T rho, const T u[DESCRIPTOR::d], T uSqr) const override
 Compute equilibrium distribution function.
 
CellStatistic< T > collide (Cell< T, DESCRIPTOR > &cell) override
 Collision step.
 
getOmega () const
 Get local relaxation parameter of the dynamics.
 
void setOmega (T omega_)
 Set local relaxation parameter of the dynamics.
 
- Public Member Functions inherited from olb::legacy::BasicDynamics< T, DESCRIPTOR, MOMENTA >
computeEquilibrium (int iPop, T rho, const T u[DESCRIPTOR::d]) const override
 Return iPop equilibrium for given first and second momenta.
 
std::type_index id () override
 Expose unique type-identifier for RTTI.
 
AbstractParameters< T, DESCRIPTOR > & getParameters (BlockLattice< T, DESCRIPTOR > &block) override
 Parameters access for legacy post processors.
 
- Public Member Functions inherited from olb::dynamics::CustomCollision< T, DESCRIPTOR, MOMENTA >
void initialize (Cell< T, DESCRIPTOR > &cell) override
 Initialize dynamics-specific data for cell.
 
computeRho (ConstCell< T, DESCRIPTOR > &cell) const override
 Compute particle density.
 
void computeU (ConstCell< T, DESCRIPTOR > &cell, T u[DESCRIPTOR::d]) const override
 Compute fluid velocity.
 
void computeJ (ConstCell< T, DESCRIPTOR > &cell, T j[DESCRIPTOR::d]) const override
 Compute fluid momentum.
 
void computeStress (ConstCell< T, DESCRIPTOR > &cell, T rho, const T u[DESCRIPTOR::d], T pi[util::TensorVal< DESCRIPTOR >::n]) const override
 Compute stress tensor.
 
void computeRhoU (ConstCell< T, DESCRIPTOR > &cell, T &rho, T u[DESCRIPTOR::d]) const override
 Compute fluid velocity and particle density.
 
void computeAllMomenta (ConstCell< T, DESCRIPTOR > &cell, T &rho, T u[DESCRIPTOR::d], T pi[util::TensorVal< DESCRIPTOR >::n]) const override
 Compute all momenta up to second order.
 
void defineRho (Cell< T, DESCRIPTOR > &cell, T rho) override
 Set particle density.
 
void defineU (Cell< T, DESCRIPTOR > &cell, const T u[DESCRIPTOR::d]) override
 Set fluid velocity.
 
void defineRhoU (Cell< T, DESCRIPTOR > &cell, T rho, const T u[DESCRIPTOR::d]) override
 Define fluid velocity and particle density.
 
void defineAllMomenta (Cell< T, DESCRIPTOR > &cell, T rho, const T u[DESCRIPTOR::d], const T pi[util::TensorVal< DESCRIPTOR >::n]) override
 Define all momenta up to second order.
 
void inverseShiftRhoU (ConstCell< T, DESCRIPTOR > &cell, T &rho, T u[DESCRIPTOR::d]) const override
 Calculate population momenta s.t. the physical momenta are reproduced by the computeRhoU.
 
- Public Member Functions inherited from olb::Dynamics< T, DESCRIPTOR >
virtual ~Dynamics () any_platform
 
virtual std::string getName () const
 Return human-readable name.
 
void iniEquilibrium (Cell< T, DESCRIPTOR > &cell, T rho, const T u[DESCRIPTOR::d])
 Initialize to equilibrium distribution.
 
void iniRegularized (Cell< T, DESCRIPTOR > &cell, T rho, const T u[DESCRIPTOR::d], const T pi[util::TensorVal< DESCRIPTOR >::n])
 Initialize cell to equilibrium and non-equilibrum part.
 

Detailed Description

template<typename T, typename DESCRIPTOR, typename MOMENTA = momenta::BulkTuple>
class olb::EntropicDynamics< T, DESCRIPTOR, MOMENTA >

Implementation of the entropic collision step.

Definition at line 88 of file entropicDynamics.h.

Member Typedef Documentation

◆ exchange_momenta

template<typename T , typename DESCRIPTOR , typename MOMENTA = momenta::BulkTuple>
template<typename M >
using olb::EntropicDynamics< T, DESCRIPTOR, MOMENTA >::exchange_momenta = EntropicDynamics<T,DESCRIPTOR,M>

Definition at line 91 of file entropicDynamics.h.

Constructor & Destructor Documentation

◆ EntropicDynamics()

template<typename T , typename DESCRIPTOR , typename MOMENTA >
olb::EntropicDynamics< T, DESCRIPTOR, MOMENTA >::EntropicDynamics ( T omega_)

Constructor.

Parameters
omega_relaxation parameter, related to the dynamic viscosity
momenta_a Momenta object to know how to compute velocity momenta

Definition at line 156 of file entropicDynamics.hh.

157 : legacy::BasicDynamics<T,DESCRIPTOR,MOMENTA>(),
158 omega(omega_)
159{
160 this->getName() = "EntropicDynamics";
161}
virtual std::string getName() const
Return human-readable name.
Definition interface.h:63

References olb::Dynamics< T, DESCRIPTOR >::getName().

+ Here is the call graph for this function:

Member Function Documentation

◆ collide()

template<typename T , typename DESCRIPTOR , typename MOMENTA >
CellStatistic< T > olb::EntropicDynamics< T, DESCRIPTOR, MOMENTA >::collide ( Cell< T, DESCRIPTOR > & cell)
overridevirtual

Collision step.

Reimplemented from olb::Dynamics< T, DESCRIPTOR >.

Definition at line 170 of file entropicDynamics.hh.

172{
173 typedef DESCRIPTOR L;
174 typedef entropicLbHelpers<T,DESCRIPTOR> eLbH;
175
176 T rho, u[DESCRIPTOR::d];
177 MOMENTA().computeRhoU(cell, rho, u);
178 T uSqr = util::normSqr<T,L::d>(u);
179
180 T f[L::q], fEq[L::q], fNeq[L::q];
181 for (int iPop = 0; iPop < L::q; ++iPop) {
182 fEq[iPop] = eLbH::equilibrium(iPop,rho,u);
183 fNeq[iPop] = cell[iPop] - fEq[iPop];
184 f[iPop] = cell[iPop] + descriptors::t<T,L>(iPop);
185 fEq[iPop] += descriptors::t<T,L>(iPop);
186 }
187 //==============================================================================//
188 //============= Evaluation of alpha using a Newton Raphson algorithm ===========//
189 //==============================================================================//
190
191 T alpha = 2.0;
192 bool converged = getAlpha(alpha,f,fNeq);
193 if (!converged) {
194 std::cout << "Newton-Raphson failed to converge.\n";
195 exit(1);
196 }
197
198 OLB_ASSERT(converged,"Entropy growth failed to converge!");
199
200 T omegaTot = omega / 2.0 * alpha;
201 for (int iPop=0; iPop < DESCRIPTOR::q; ++iPop) {
202 cell[iPop] *= (T)1-omegaTot;
203 cell[iPop] += omegaTot * (fEq[iPop]-descriptors::t<T,L>(iPop));
204 }
205
206 //statistics.incrementStats(rho, uSqr);
207}
void exit(int exitcode)
Definition singleton.h:165
#define OLB_ASSERT(COND, MESSAGE)
Definition olbDebug.h:45

References OLB_ASSERT.

◆ computeEquilibrium()

template<typename T , typename DESCRIPTOR , typename MOMENTA >
T olb::EntropicDynamics< T, DESCRIPTOR, MOMENTA >::computeEquilibrium ( int iPop,
T rho,
const T u[DESCRIPTOR::d],
T uSqr ) const
override

Compute equilibrium distribution function.

Definition at line 164 of file entropicDynamics.hh.

165{
167}
static T equilibrium(int iPop, T rho, const T u[DESCRIPTOR::d])
Computation of equilibrium distribution.

References olb::entropicLbHelpers< T, DESCRIPTOR >::equilibrium().

+ Here is the call graph for this function:

◆ getOmega()

template<typename T , typename DESCRIPTOR , typename MOMENTA >
T olb::EntropicDynamics< T, DESCRIPTOR, MOMENTA >::getOmega ( ) const

Get local relaxation parameter of the dynamics.

Definition at line 210 of file entropicDynamics.hh.

211{
212 return omega;
213}

◆ setOmega()

template<typename T , typename DESCRIPTOR , typename MOMENTA >
void olb::EntropicDynamics< T, DESCRIPTOR, MOMENTA >::setOmega ( T omega_)

Set local relaxation parameter of the dynamics.

Definition at line 216 of file entropicDynamics.hh.

217{
218 omega = omega_;
219}

The documentation for this class was generated from the following files: