Randy Roberts
Forum Replies Created

AuthorPosts

Randy RobertsMember
Mathias,rnrnThank you! I need to look into the unit converter code.rnrnBTW, the reason I am so interested in this is that I am trying to implement Swift and Osborn’s model:rnrnLattice Boltzmann Simulation of Nonideal Fluids, Phys. Rev. Lett. 75, 4031 (1995)rnLattice Boltzmann Simulations of liquidgas and binary fluid systems, Phys. Rev. E. 54(5) (1996)rnrnRegards,rnRandy
Randy RobertsMemberMathias,rnrnThank you again for your patience.rnrnI think you and I are missing an important point…rnrnblock.get(iX,iY).computeRho() computes the fluid’s actual RHO not (RHO + 1).rnrnUsing the actual RHO for the fluid, your computed pressure is (I think incorrectly)…rnrnP = (RHO – 1) * (Cs*Cs)rnrnI don’t think this is what you want.rnrnRegards,rnRandyrn
Randy RobertsMemberDear Mathias,rnrnThank you for your reply.rnrnI need to sit down and calculate some values for f^eq and f to get a better feel for question 1).rnrnI’m still a bit uncertain as to question 2). In He/Lou page 942, right after eq. (A13b) it saysrn P = c_s^2 rho / rho_0rnrnSince you are calculating the actual rho (not rho+1) inrn block.get(iX,iY).computeRho(),rnshould you not need thern fields.pressureField.get(iX,iY) = (T)1rnexpression in order to calculate the pressure?rnrnRandy
Randy RobertsMemberCorrection:rn I meant for the c^2 term to be multiplied, not divided. rnrnCorrected question 2)…rnrn2) Why is pressure calculated the way it is (shown below)? Isn’t the equation of staternp = rho*c^2,rnnotrnp = (rho1)*c^2rn
Randy RobertsMemberI’ve read the papers, and read through the OpenLB code. I think I can do it pretty easily.rnrnIf I get it to work (along with a multicomponent diffusion dynamics) I’ll share the code with the OpenLB community.rnrnThanks,rnRandy

AuthorPosts