
OpenLB technical report: BGK dynamics in which average density

is time-independent

Jonas Latt

April 2008

1 Density variations in lattice Boltzmann

In an ideal gas, pressure is proportional to the particle density, with the speed of sound cs as
proportionality factor:

p = c2
sρ. (1)

The density (or pressure) can be split into a thermodynamic component ρ0, which is space-
independent but may depend on time, and a hydrodynamic component ρh, whose contribution
scales as the square of the Mach number Ma:

ρ(x, t) = ρ0(t) + Ma2ρh. (2)

Lattice Boltzmann models are locally mass conserving. Therefore, ρ0 is time-independent if the
boundary condition is globally mass-conserving (for example, if all boundary nodes use full-way
bounce-back). But, when Dirichlet velocity boundaries are implemented (and with some boundary
conditions, even with no-slip boundaries), global mass-conservation is not guaranteed. Of course,
a boundary condition for an incompressible fluid must conserve mass asymptotically:∫

∂Ω
ρu · ndσ = 0, (3)

where ∂Ω is the domain boundary, n the boundary normal and dσ a line element along the bound-
ary. In an implementation however, this global conservation law may be subject to numerical
approximation. A particularly striking example in which mass is not conserved in a lattice Boltz-
mann simulation is the cavity flow. Here, the velocity profile is discontinuous in the two upper
corners, which results in a visible non-zero mass balance.

Conceptually speaking, time-variations of ρ0 are not an issue in incompressible fluids, because
only the gradient of the pressure enters the Navier-Stokes equations, and not the value of p itself.
Such variations are however problematic in actual simulation, because lattice Boltzmann does for
example not support negative density values. Furthermore, the accuracy of simulations generally
decreases when ρ deviates too strongly from 1. Therefore, global density variations due to boundary
conditions should be avoided.

2 The ConstRhoBGKdynamics in OpenLB

A way to circumvent these technical difficulties is to reset ρ0 to 1 after each iteration step. Which
means:

1. Compute the average density ρ̄ over the lattice.

2. Subtract ρ̄− 1 from every lattice site.

1



The following line of code does the required operation in OpenLB:
lattice.stripeOffDensityOffset(lattice.computeAverageDensity()-1)

This works, but is not efficient. If you do this, you need to traverse memory three times per
iteration step instead of only once (see TR1): once for collision-propagation, once to compute the
average density and once to stripe off the density offset. Things would be much more efficient if this
density correction were handled within the collision step. That’s exactly what happens when you
use ConstRhoBGKdynamics instead of BGKdynamics, where the ρ̄ − 1 correction is integrated into
collision. To know the value of ρ̄, the internal statistics of the lattice is accessed. That means that
the value of ρ̄ at the previous iteration is used, not the current one. Therefore, ρ0 is not exactly
reset to 1, but almost. This certainly prevents you from reaching a numerically problematic regime
for ρ, and it is numerically almost as efficient as the original BGK model.

3 Discussion

The ConstRhoBGKdynamics model can save a simulation from numerical instability, but bears the
danger of being overused. An important assumption of the model is that the density balance intro-
duced by the boundary is essentially constant in space and does not scale with the Mach number.
This assumption is violated if a boundary injects density at a high rate, or if it produces pressure
waves. In that case, the boundary condition is invalid and needs to be fixed: ConstRhoBGKdynamics
doesn’t do any good here.

2


