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1 Introduction

1.1 Fluid Flow Simulations

1.2 Lattice Boltzmann Methods

This text is directed at people who want gain insight into Lattice-Boltzmann Methods
(LBM).

• The most recent publication that this documentation refers to, was written by
Erlend Magnus Viggen. His PhD Thesis The lattice Boltzmann method:
Fundamentals and acoustics published in 2014, delivers a clear and complete
introduction for beginners. Chapters 3 and 4 are particularly relevant, in which
he develops the fundamentals, such as theory of gas kinetics and the Boltzmann
equation.

• A concise introduction is given by A. A. Mohamad. In his book Lattice Boltz-
mann Method [2011], he shows clearly, how one obtains macroscopic equations
from LBM using Chapman-Enskop expansion.

• The readers who want insight into Lattice-Gas Cellular Automatas - the historical
origin of LBM - may want to refer to Dieter A. Wolf-Glodrow’s book Lattice-
Gas Cellular Automata and Lattice Boltzmann Models [2000]. Starting
with Cellular Automata, he explores the beauty of LBM. A helpful interpretation
of LBM is given in the beginning of the book.

• A quick overview of LBM, is obtained from the often cited paper of S. Chen and
G. D. Doolen Lattice Boltzmann Method for Fluid Flows published in
1998.

1.3 The OpenLB Project

1.3.1 What is OpenLB?

OpenLB is a numerical framework for lattice Boltzmann simulations, created by stu-
dents and researchers with different backgrounds in computational fluid dynamics. The
code can be used by application programmers to implement specific flow geometries in a
straightforward way, and by developers to formulate new models. For this first group of
users, OpenLB offers a neat interface through which it is possible to set up a simulation
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with little effort. For the second group, the structure of the code is kept conceptu-
ally simple, implementing basic concepts of the lattice Boltzmann theory step-by-step.
Thanks to this, the code is an excellent framework for programmers to develop pieces of
reusable code that can be exchanged in the community.

One key aspect of the OpenLB code is genericity in its many facets. The core concept
of generic programming is to offer a single code that can serve many purposes. On
one hand, the code implements dynamic genericity through the use of object-oriented
interfaces. One use of this is that the behavior of lattice sites can be modified during
program execution, to distinguish for example between bulk and boundary cells, or to
modify the fluid viscosity or the value of a body force dynamically. Furthermore, C++
templates are used to achieve static genericity. As a result, it is sufficient to write a
single generic code for various 3D lattice structures, such as D3Q15, D3Q19, and D3Q27
(for more information on lattice structures, see Section 5.1.2).

1.3.2 Getting help with OpenLB

The following resources are available for OpenLB users:

Web site. Most recent releases of the code and documentation, including this user guide,
are found on the website http://www.openlb.net/ .

Forum. If you experience troubles with OpenLB, you may wish to post your concerns
to the Lattice Boltzmann community in the forum on the OpenLB homepage.

Bug reports. If you think you found a bug in OpenLB, we encourage you to submit a
report to bug@openlb.net. Useful bug reports include the full source code of the
program in question, a description of the problem, an explanation of the circum-
stances under which the problem occurred, and a short description of the hardware
and the compiler used. Moreover, other Makefile switches, such as buildtype and
mode of parallelization found in Makefile.inc can provide useful information too.

subsectionCompiling OpenLB programs Note: The framework for compiling OpenLB
code is based on Makefiles and has so far been tested only on platforms of the Linux/Unix
family, including Mac OS X and Cygwin. If you are working under Windows and want
to get started quickly, you might consider installing the free Cygwin software [1], which
efficiently emulates a Posix environment under Windows (a large part of OpenLB was
developed under Cygwin).

OpenLB consists of generic, template-based code, which needs to be included in the
code of application programs, and precompiled libraries that are to be linked with the
program. The installation process is light and does not require an explicit precompilation
and installation of libraries. Instead, it is sufficient to unpack the source code into an
arbitrary directory. Compilation of libraries is handled on-demand by the Makefile of
an application program.

To get familiar with OpenLB, new users are encouraged to have a look at programs
in the examples directory. Once inside one of the example directories, entering the
command make will first produce libraries and then the end-user example program. This
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close relationship between the production of libraries and end-user programs reflects the
fact that many OpenLB users presently tend to play around with the OpenLB code as
well.

The file Makefile.inc in the root directory can be easily edited to modify the com-
pilation process. Available options include the choice of the compiler (GNU g++ is the
default), optimization flags, and a switch between normal/debug mode, and between
sequential/openmp-parallel/mpi-parallel programs.

To compile your own OpenLB programs from an arbitrary directory, make a copy of a
sample Makefile. Edit the ROOT:= entry to indicate the location of the OpenLB source,
and the OUTPUT:= entry to explicit the name of your program, without file extension.

1.3.3 Which features are currently implemented?

Lattice Boltzmann models

BGK model for fluids Section 5.1.3 Reference [15]
Regularized model for fluids Section 5.1.3 Reference [25]
Multiple Relaxation Times (MRT) Section 5.1.3 References [17, 34]
Entropic Lattice Boltzmann Section 5.1.3 Reference [10]
BGK with adjustable speed of sound Section 5.1.3 References [2, 16]
BGK and MRT with Smagorinsky model Section 5.1.3 References [27]
Porous media model Section 5.1.3

Multiphysics coupling

Shan-Chen two-component fluid Section 5.7 Reference [29]
Thermal fluid with Boussinesq approximation Section 5.7 Reference [21]

Lattice structures

D2Q9 This lattice is available in the precompiled library
D3Q13 This lattice requires the use of a specific dynamics object (see also Ref. [18])
D3Q15
D3Q19 This lattice is available in the precompiled library
D3Q27

Boundary conditions for straight boundaries (including corners)

Regularized local Default choice for local boundaries
Finite difference (FD) velocity gradients non-local Default choice for non-local boundaries
Inamuro local
Zou/He local
Non-linear FD velocity gradients non-local
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Boundary conditions for curved boundaries

Bouzidi non-local first order References [12]

Data structures

The basic data structure used by an application programmer is the BlockLatticeXD.
Here, the placeholder X stands for the number 2 or 3, depending on whether a 2D or
3D lattice is instantiated. A generalization of the BlockLatticeXD are the Cuboid-

StructureXD and the MultiBlockLatticeXD, both of which have similar functionality
but a slightly different scope. These advanced data structures generate a patchwork con-
sisting of many BlockLatticeXD structures that are presented behind a unified interface.
Applications of these structures are MPI-parallel and memory saving simulations that
do not allocate memory in chosen subdomains of the numerical grid.

Input / Output

The basic mechanism behind I/O operations in OpenLB is the serialization and unseri-
alization of a BlockLatticeXD and a DataFieldXD. This mechanism is used to save the
state of a simulation, and to produce VTK output for data post-processing with exter-
nal tools. In both cases, the data is saved in the binary Base64 format, which ensures
compact and (relatively) platform-independent data storage.

1.3.4 Project participants

The OpenLB project was initiated in 2006. Between 2006 and 2008 Jonas Latt was the
project coordinator. As of 2009, Mathias J. Krause has been coordinating the project.
Since 2006 the following persons have contributed source code to OpenLB:

Armani Arfaoui: core: performance improvements for D3Q19 BGK collision operator

Saada Badie: core: performance improvements for D3Q19 BGK collision operator

Lukas Baron (active): utilities: (parallel) console output, time and performance mea-
surement, dynamics: porous media model, functors: concept, div. functors
implementation

Vojtech Cvrcek (active): functors: 2D adaptation, dynamics: power law, exam-
ples: updates

Tim Dornieden: functors: smooth start scaling, io: vti writer

Jonas Fietz: io: configure file parsing based on XML, octree STL reader interface to
CVMLCPP (< release 0.9), communication: heuristic load balancer

Benjamin Förster (active): core: super data implementation io: new serializer and
serializable implementation, vti writer, new vti reader, functors: new discrete
indicator
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Thomas Henn (active): io: voxelizer interface based on STL, particles: particulate
flows

Fabian Klemens (active): functors: flux

Jonas Kratzke: core: unit converter, io: GUI interface based on description files and
OpenGPI, boundaries: Bouzidi boundary condition

Mathias J. Krause (active): core: hybrid-parallelization approach, super structure,
communication: OpenMP parallelization, cuboid data structure for MPI par-
allelization, load balancing, general: makefile environment for compilation, inte-
gration and maintenance of added components (since 2008), boundaries: Bouzidi
boundary condition, convection, geometry: concept, parallelization, statistics, io
new serializer and serializable concept, functors: concept, div. functors imple-
mentation, examples: venturi3d, aorta3d

Jonas Latt: core: basic block structure, communication: basic parallel block lattice
approach (< release 0.9), io: vti writer, general: integration and maintenance of
added components (2006-2008), boundaries: basic boundary structure, dynam-
ics: basic dynamics structure, examples: numerous examples, which have been
further developed in recent years

Marie-Luise Maier (active): particles: particulate flows, frame change

Orestis Malaspinas: boundaries: alternative boundary conditions (Inamuro, Zou/He,
Nonlinear FD), dynamics: alternative LB models (Entropic LB, MRT) item[Cyril
Masquelier:] functors: indicator, smooth indicator

Albert Mink (active): functors: arithmetic, io: parallel VTK interface

Patrick Nathen (active): dynamics: turbulence modelling (advanced subgrid-scale mod-
els), examples: nozzle3d

Bernd Stahl: communication: 3D extension to MultiBlock structure for MPI paral-
lelization (< release 0.9), core: parallel version of (scalar or tensor-valued) data
fields (< release 0.9), io: VTK output of data (< release 0.9)

Robin Trunk (active): dynamics: parallel thermal, advection diffusion models

Peter Weisbrod (active): dynamics: parallel multi phase/component, examples: struc-
ture and showcases, phaseSeparationXd

Gilles Zahnd: functors: rotating frame functors

Asher Zarth (active): core: vector implementation

Simon Zimny: io: pre-processing: automated setting of boundary conditions
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2 Using OpenLB for Applications

The general way of functioning in OpenLB follows a generic path.

1st Step: Initialization The converter between physical and lattice units is is set in this
step. The parameters for the simulation setup are chosen here, too, if they have
not already been set at the beginning.

2nd Step: Prepare geometry The geometry is acquired, either from another file (a .stl

file here) or from defining indicator functions. A mesh is created from this infor-
mation, and the required geometry is prepared. This consists of classifying voxels
with material numbers, according to the kind of voxels they are: an inner voxel
containing fluid ruled by the fluid dynamics will have a different number than a
voxel on the inflow with conditions on its velocity. The function prepareGeometry

is called for these tasks. Some examples and applications that use a rather simple
geometry skip this step.

3rd Step: Prepare lattice The lattice dynamics are set here. The type of dynamics are
selected from the different implementations. The choices depend on whether a
force is acting or not, the use of single relaxation time (BGK) or multiple relax-
ation times (MRT), the simulation dimension (it can also be a 2D model), whether
compressible or incompressible fluid is considered, and the number of neighbour-
ing voxels chosen. The boundary condition initialization is done to enable any
kind of boundaries. The lattice is then defined in the function prepareLattice,
with the boundary condition choices for every material number, and for which
material numbers, which corresponding dynamics are applied. Here, only the kind
of boundary (like Bouzidi, bounce-back, velocity, or pressure) is defined, not the
profile function itself.

4th Step: Main loop with timer The timer is initialized and started, then a loop over
all time steps iT starts the simulation, during which the functions setBoundaryValues,
collideAndStream and getResults (steps 5, 6 and 7 respectively) are called re-
peatedly until a maximum of iterations is reached, or the simulation has converged.
At the end, the timer is stopped and the results are printed.

5th Step: Definition of initial and boundary conditions The first of the three impor-
tant functions called during the loop, setBoundaryValues, puts into practice the
boundary functions’ values. In some applications, it needs to refresh them during
each time step, in others they stay the same during the whole simulation and the
function doesn’t need to do anything after the very first iteration.
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6th Step: Collide and stream execution Another function collideAndStream is called
each iteration step, to perform the collision and the streaming step. If more than
one lattice is used, the function is called for each lattice seperately.

7th Step: Computation and output of results At the end of each iteration step, the
function getResults is called, which creates console output, .gif files or .vtk

files of the results at certain timesteps.

This general structure is the maintained throughout every OpenLB simulation, it is
only the choices that are made which determine the simulation: every real modification is
done in the called functions, to prepare the geometry, the converter, the lattice, and the
boundary profiles. Every change has to match OpenLB’s implementation. Consequently,
new models might need changes or additions to the source code. For example, the classes
defined in the code are always issued from a parent-class and have to match to the
functionality, which may sometimes lead to unexpected issues to solve.

sectionLesson 1: - A typical application program structure: Implement your first
OpenLB program

Unpack the OpenLB tar-ball on your system, and compile one of the example pro-
grams. If this is successful, create a directory for this tutorial at a location of your choice.
Create a Makefile in this directory, according to the procedure explained in Section 1.3.2.

A few lines are invariably the same from one OpenLB program to another:

Listing 2.1: Framework of an OpenLB program

1 #include ” olb2D . h”
#ifndef OLB_PRECOMPILED // Unless precompiled version is used ,

#include ” olb2D . hh” // include full template code

#endif

6 using namespace olb;

Some lines in this program deserve additional comments:

Line 1: The header file olb2D.h includes definitions for the whole 2D code present in
the release. In the same way, access to 3D code is obtained by including the file
olb3D.h.

Line 3: Most OpenLB code depends on template parameters. Therefore, it cannot be
compiled in advance, and needs to be integrated “as is” into your programs via the
file olb2D.hh or olb3D.hh respectively. Including all this code slows down com-
pilation (2D codes may take around 10 seconds to compile, and 3D codes around
30 seconds). If this overhead becomes too annoying during frequent development-
compilation cycles, the code can be precompiled for the required data types. Al-
though this topic is not covered in the tutorial, this short explanation should clarify
the meaning of the the cryptic #ifndef OLB_PRECOMPILED.

Line 6: All OpenLB code is contained in the namespace olb.
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Furthermore, for the examples to compile, the following declarations need to be in-
cluded into Listing 2.1 between Line 4 and 6:

#include <vector > // Some C++ libraries which are

#include <cmath > // required for the following

#include <iostream > // examples

4 #include <iomanip >

#include <fstream >

using namespace olb; // OpenLB namespaces which are

using namespace olb:: descriptors; // accessed in the

9 using namespace olb:: graphics; // examples

using namespace std; // Namespace of standard C++

library

At this point, the code for the simulation of a fluid flow can be inserted at the place of
line 10. The following simple example represents a fluid initially at rest with a slightly
increased particle density within a disk around the center. The flow is modeled through
the single relaxation-time BGK model, and it evolves in a system with periodic bound-
aries. (It should be pointed out that this example is only used to illustrate programming
issues. The chosen initial condition does not really represent a physically meaningful
state of an incompressible fluid. The example “works” because the LB model is contrived
into adopting a compressible regime. Interpreting the results of a BGK model under in
the context of compressible flows, however, raises numerous issues of its own that cannot
be covered here. Thus, use the code for learning purposes, but don’t attribute too much
meaning to the numerical result.)

Listing 2.2: to be inserted at Line 10 of Listing 1

#define LATTICE D2Q9Descriptor

typedef double T;

int nx = 20;

int ny = 30;

5 int numIter = 100;

T omega = 1.;

T r = 5.;

int main(int argc , char* argv []) {

10 olbInit (&argc , &argv);

// Insert the central part of your code here

BlockLattice2D <T, LATTICE > lattice(nx , ny);

BGKdynamics <T, LATTICE > bulkDynamics (

omega ,

15 instances :: getBulkMomenta <T,LATTICE >()

);

lattice.defineDynamics (0,nx -1,0,ny -1, &bulkDynamics);

for (int iX=0; iX<nx; ++iX) {

20 for (int iY=0; iY<ny; ++iY) {
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T rho=1., u[2] = {0. ,0.};

if ((iX-nx/2)*(iX-nx/2) + (iY -ny/2)*(iY -ny/2) < r*r) {

rho = 1.01;

}

25 lattice.get(iX ,iY).iniEquilibrium(rho ,u);

}

}

for (int iT=0; iT<numIter; ++iT) {

30 lattice.collide ();

lattice.stream(true);

}

ImageWriter <T> imageWriter(” l e e l o o ”);
35 imageWriter.writeScaledGif (

” l e s s o n 1 ”,
lattice.getDataAnalysis ().getVelocityNorm () );

}

A few explanations are again in order:

Line 1: Choice of a lattice descriptor. Lattice descriptors specify not only which lattice
you are going to use (for 2D simulations, the current OpenLB release gives you
no choice but D2Q9 anyway), but also potentially the nature of additional scalars,
such as an external force field, for which memory needs to be allocated on a grid
cell.

Line 2: Choice of double precision floating point arithmetic. Any other floating point
type can be used, including built-in types and user-defined types which are imple-
mented through a C++ class.

Lines 3-7: Constants to specify the dimensions of the nx×ny lattice and the total
number numIter of iteration steps. The relaxation parameter ω is the reciprocal
of the relaxation time τ . It determines the value of the shear viscosity ν of the
fluid.

Line 10: This line is gratuitous in sequential programs, but it is required in the context
of MPI-parallelism (which is explained in Lesson 10). As a general rule, you will
always want your program to be ready for both sequential and parallel executions.
It is therefore good practice to include this line as a matter of routine, in all cases.

Line 12: Instantiation of a BlockLattice2D object. At this point, memory for the
nx×ny×9 particle populations is allocated. If additional memory has been re-
quested for external scalars (this is not the case here), this memory is also allocated
during the instantiation of the BlockLattice2D.

Lines 13-16: The Dynamics object determines the implementation of the collision step
on grid nodes, in this case BGK [15]. Objects of type BGKdynamics can be cus-
tomized by indicating how the momenta of distribution functions (particle density,
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velocity, etc.) should be computed. By choosing a specific Momenta object, one
can, for example, implement boundary conditions in which the dynamics are the
same as in the bulk, but the momenta are computed differently because of missing
particle populations. In the present example, a default implementation is chosen
for the computation of the momenta.

Line 17: The previously instantiated dynamics are to be used on all lattice nodes. The
domain on which to instantiate the dynamics is indicated explicitly, the x-index
ranging from 0 to nx-1, and the y-index from 0 to ny-1.

Line 25: Initialize particle populations at an equilibrium distribution, with slightly
increased density inside a circle of radius r.

Line 30: At each iteration step, the collision specified by the variable bulkDynamics is
applied to each grid node.

Line 31: After collision follows the streaming step. The boolean argument true indi-
cates that boundaries are periodic.

Line 34: The ImageWriter offers a means of producing 2D images in PPM format. If the
package ImageMagick is installed on your machine, you can also get GIF images.
Four colormaps are available for each of the four elements (“earth”, “water”, “air”,
“fire”) and one for the fifth element “leeloo” (see Ref. [3]).

Line 37: An object of type DataAnalysis2D is instantiated to extract the norm of the
velocity from the numerical result. From this, an image is created with help of
the ImageWriter, by rescaling the colormap to the range of values adopted by the
velocity norm in the numerical result.

You can easily observe that boundary conditions are periodic by playing around with
the code and producing images at various time steps. Alternatively, no-slip walls are
implemented by calling the method BlockLattice2D::stream() in line 28 with an ar-
gument false. This is the default argument, and the method can therefore be invoked
with no argument at all:

Listing 2.3: Substitutions to replace periodic boundaries by no-slip walls

lattice.collide ();

2 lattice.stream ();

These no-slip walls are obtained through a so-called halfway bounceback mechanism:
particle populations on boundary cells, which would leave the computational domain
during streaming, stay on the cell and their value is copied to the particle population
with opposite velocity vector instead. After this, the usual collision step is executed. No
efficiency overhead is incurred for the implemention of this mechanism, because it is an
automatic side-effect of the algorithm in OpenLB for the streaming step [4].
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2.1 Lesson 2: Understand the BlockLattice

This second lesson starts with a response to the scream of indignation you emitted in
Lesson 1, when you learned that each cell of a BlockLatticeXD carries along its own
Dynamics object, and collision is triggered by some dynamic run-time mechanism. How
could the OpenLB developers favor object-oriented mumbojumbo over efficiency, right
there in the core of the library?

The truth is that the overhead incurred by delegating collision to an object (instead of
hard-coding collision somewhere inside the loop over grid nodes) is completely irrelevant.
The efficiency loss is minimal on all platforms on which OpenLB has been tested so far,
and it is negligible in face of other big-picture efficiency considerations.

One such consideration is about the separation of collision and streaming at Line 28
and 29 of Listing 2.2. The question to ask, instead of nitpicking over object-oriented
vs. non-object-oriented issues, is whether it is really necessary to step through memory
twice; once to execute collision and once to execute streaming. As a matter of fact,
there are several ways of avoiding this time-consuming double access to memory, one
of which is implemented in OpenLB and documented in Ref. [4]. For an OpenLB user,
doing this is as easy as replacing the collision-streaming sequence by a call to the method
collideAndStream():

Listing 2.4: Collision and streaming in one step for improved efficiency

// collision -streaming cycles

// lattice.collide ();

3 // lattice.stream(true);

lattice.collideAndStream(true);

Using the method collideAndStream is, of course, only possible when you don’t need
to compute or modify anything between collision and streaming. When this is the case,
the use of this method can however reduce by as much as 40% the execution time of
your code, depending on your hardware.

The BlockLattice2D<T, LATTICE> is basically a nx-by-ny-by-q array of variables of
type T. The following code for example is valid (although it is bad practice, as explained
below):

Listing 2.5: Direct access to values in a BlockLattice2D

1 int nx, ny, someX , someY , someF;

// <...> some code to initialize nx , ny , someX and someY

BlockLattice2D <T, LATTICE > lattice(nx,ny); // instantiate

BlockLattice

T value = lattice.get(someX ,someY)[someF ]; // read values

lattice.get(someX ,someY)[someF] = 0.; // write values

The method BlockLattice2D<T, LATTICE>::get() delivers an object of type Cell<LATTICE>,
which contains storage space for the particle populations and, if required by the LATTICE
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template, for additional scalars. The Cell offers many methods to read and manipu-
late the data. You are much more likely to use those methods in practice, rather than
accessing particle populations directly as in Listing 2.5:

Listing 2.6: Manipulation of data through methods of a Cell

int nx, ny, someX , someY , someF;

// <...> some code to initialize nx , ny , someX and someY

BlockLattice2D <T, LATTICE > lattice(nx,ny); // instantiate

BlockLattice

// <...> some code to initialize dynamics objects of the lattice

5 T velocity [2];

lattice.get(someX ,someY).computeU(velocity); // compute velocity

velocity [0] = 0.;

lattice.get(someX ,someY).defineU(velocity); // modify velocity

In this example, the method Cell<T>::computeU() computes the velocity on a cell for
you, using its dynamics object. Conversely, the method Cell<T>::defineU() modifies
the velocity by translating the particle populations into space of moments, modifying
the moment of the velocity, and leaving the others as they are.

In addition to being more convenient, the access to the data in Listing 2.6 has a distinct
advantage to the approach of Listing 2.5. In Listing 2.5 the data inside a Cell<T> is
accessed directly, whereas in Listing 2.6 it is accessed indirectly through the dynamics
object of the cell. Although direct data access works in simple data structures, such as
the present BlockLattice2D, only indirect data access can be used in complicated data
structures. When the code is, for example executed in parallel, you cannot access the
data directly, because it might not be found on your processor. The dynamics object,
on the other hand, is smart enough to locate the data on the right processor, and to
instantiate MPI communication to access it.

Generally speaking, the methods of a Cell<T> are separated into two groups, one for
direct data access, and one for indirect data access through the dynamics object. When
using OpenLB as an application programmer, it is strongly recommended that you only
make use of methods in the second group, in order for your code to be extensible.
Methods of the first group are used by programmers who wish to extend the OpenLB
library, for example by writing a class to implement a new type of dynamics. Most of
the subsequent lessons are written for application programmers, and the code is written
with extensibility in mind, for example, by insisting on the possibility for it to be run in
parallel with minimal changes.

The following list details some useful methods to access the data of a Cell<T> indi-
rectly through the dynamics object:

void iniEquilibrium(T rho, const T u[Lattice〈T〉::d])
Initialize all particle populations at an equilibrium distribution with density rho and
velocity u.

T computeRho() const
Compute the particle density on the cell.
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void computeU(T u[Lattice〈T〉::d]) const
Compute the velocity on the cell.

void computeStress ( T pi[util::TensorVal〈Lattice〈T〉〉::n]) const
Compute the off-equilibrium stress-tensor Π(1) on the cell.

void computePopulations(T* f) const
Retrieve the particle populations and store them in a q-element C-array.

void computeExternalField(int pos, int size, T* ext) const
Retrieve the external scalars and store them in a C-array.

void defineRho(T rho)
Modify the populations such that the density yields rho and the other moments are
unchanged.

void defineU(const T u[Lattice〈T〉::d])
Modify the populations such that the velocity yields u and the other moments are un-
changed.

void defineStress(const T pi[util::TensorVal〈Lattice〈T〉〉::n])
Modify the populations such that the tensor Π(1) yields pi and the other moments are
unchanged.

void definePopulations(const T* f)
Attribute new values to all populations. The argument f is a C-array with q elements.

void defineExternalField(int pos, int size, const T* ext)
Attribute new values to all external scalars.

The discussion of this lesson is also valid for 3D lattices, which are instantiated with
the following instruction:

Listing 2.7: Instantiation of a 3D lattice

#define D3Q19Descriptor LATTICE

2 int nx, ny, nz;

// <...> initialization of nx , ny , nz

BlockLattice3D <T,LATTICE > lattice(nx,ny,nz);

The BlockLattice2D and the BlockLattice3D have different types, because they
have distinct interfaces. The method get() for example requires 2 arguments in the 2D
case and 3 arguments in 3D. The Cell class, an instance of which is delivered by the
method get(), is however the same in 2D and 3D, although its template is instantiated
with a different lattice descriptor (e.g. D2Q9Descriptor vs. D3Q19Descriptor). The
above list of methods of the Cell is therefore valid in 3D as well.

2.2 Lesson 3: Define and use boundary conditions

The current OpenLB release offers five different boundary conditions for the imple-
mentation of pressure and velocity boundaries. They support boundaries that are
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aligned with the numerical grid, and also implement proper corner nodes in 2D and
3D, and edge nodes that connect two plane boundaries in 3D. The choice of a bound-
ary condition is conceptually separated from the definition of the location of bound-
ary nodes. It is therefore possible to modify the choice of the boundary condition by
changing a single instruction in a program. This instruction is the instantiation of a
OnLatticeBoundaryCondition object:

Listing 2.8: Instantiation of OnLatticeBoundaryCondition

1 // Instantiate 2D boundary condition

OnLatticeBoundaryCondition2D <T,D2Q9Descriptor >*

boundaryCondition2D =

createLocalBoundaryCondition2D(lattice);

// Instantiate 3D boundary condition

6 OnLatticeBoundaryCondition2D <T,D3Q19Descriptor >*

boundaryCondition3D =

createLocalBoundaryCondition3D(lattice);

Objects of type OnLatticeBoundaryConditionXD are used to attribute the role of
boundary node to chosen nodes of the lattice. The following code configures a lattice in
such a way that the rectangle following the lattice boundaries implements a boundary
condition on the velocity.

Listing 2.9: Instantiation of velocity boundary condition along lattice boundaries

template <typename T>

void velocityBoundaryBox (

3 BlockLattice2D <T,D2Q9Descriptor >& lattice ,

OnLatticeBoundaryCondition2D <T,D2Q9Descriptor >& bc, T omega)

{

int nx = lattice.getNx();

int ny = lattice.getNy();

8 // top boundary

bc.addVelocityBoundary1P (1,nx -2,ny -1,ny -1, omega);

// bottom boundary

bc.addVelocityBoundary1N (1,nx -2, 0, 0, omega);

// left boundary

13 bc.addVelocityBoundary0N (0,0, 1, ny -2, omega);

// right boundary

bc.addVelocityBoundary0P(nx -1,nx -1, 1, ny -2, omega);

// Corner nodes

18 bc.addExternalVelocityCornerNN (0,0, omega);

bc.addExternalVelocityCornerNP (0,ny -1, omega);

bc.addExternalVelocityCornerPN(nx -1,0, omega);

bc.addExternalVelocityCornerPP(nx -1,ny -1, omega);

23 // Make the lattice ready for simulation
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lattice.initialize ();

}

When boundary nodes are instantiated, it is necessary to specify the orientation of the
boundary through the normal vector that points outside of the domain. The instruction
addVelocityBoundary1P refers to a boundary whose normal is in positive y-direction
(P stands for “positive”, and indexes are numbered as 0 for the x-index and 1 for the
y-index). For external corners, the expression NN refers to any boundary vector whose
opposite direction points inside the numerical domain. In this case, this boundary vec-
tor points in negative x-direction and negative y-direction. The term External in the
method addExternalVelocityCornerNN refers to the fact that the domain boundaries
are convex shaped. Corners of concave shaped boundaries are instantiated with meth-
ods of the form addInternalVelocityCornerXX, where X stands again for N or P and
indicates the direction of a vector pointing outside the numerical domain.

Pressure boundaries are instantiated just as easily by replacing the word Velocity by
Pressure in the methods of the OnLatticeBoundaryCondition object.

Things are slightly more complicated in 3D, where edges also need seperate treatment.
Edges are locations where two boundary surfaces that are orthogonal to each other
meet. The following are typical instructions one may use in the 3D case. In 3D, the
instruction addVelocityBoundary0N instantiates a plane boundary domain in negative
x-direction (a left boundary). It takes 6 arguments, in addition to the omega-argument,
in order to delimit the plane like a sub-volume with one degenerate space direction. The
instruction addExternalVelocityEdge0NP instantiates an edge whose outward-pointing
normal vector is in the 0-plane (in the plane in which x = 0) and which points in negative
y- and positive z-direction. Counting of indexes is cyclic: the instruction addExternal-

VelocityEdge1NP denotes an edge with normal vector in the y = 0-plane and with
negative z- and positive x-direction. The Edge instructions also take 6+1 arguments,
because they treat the edge like a sub-volume with two degenerate directions. In 3D,
there are external and internal corners, and there are external and internal edges.

Although setting up the geometry of the numerical domain can be somewhat bother-
some, especially in 3D, this is a one-time job. Once the setup is completed, specifying
the required velocity and density on boundaries is straightforward. This is done through
a call to the method defineVelocity or defineDensity of the corresponding cell. You
may remember from LESSON 2, that on normal lattice Boltzmann nodes, these methods
modify the value of particle populations in order to obtain the required velocity/density.
On boundary nodes, the rules are different. Here, particle populations are not modified
(which is necessary, as you may want to change the boundary velocity during a simu-
lation, without tampering with the particle populations). On velocity boundaries, the
method defineVelocity modifies the required velocity value for the boundary, whereas
defineDensity has no effect. On pressure boundaries, the method defineVelocity has
no effect and defineDensity picks out the required density value on the boundary. It
should be pointed out that although the domain geometry is specified piece-wise (plane
per plane, edge per edge, and corner per corner), the velocity/density can be adapted
individually on every node. Furthermore, acessing parameters of the boundary on a per-
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cell base is convenient, because it does not require the programmer to distinguish any
more between plane boundaries, edges or corners. Finally, the choice of the velocity/-
density value is not static: it can be altered at every time step to model time-dependent
boundaries.

The following is a list of available boundary conditions. Instead of showing the actual
class name of the boundary condition, the list indicates the names of functions that
generate the boundary condition, as these are the ones you are likely to access as an
end user. The X is a placeholder for 2 respectively 3, as all boundary conditions are
implemented in 2D and 3D.

createLocalBoundaryConditionXD
This is the default local boundary condition. It implements a regularized boundary [25],
which tends to be numerically stable in a last range of regimes.

createInterpBoundaryConditionXD
This is the default non-local boundary condition. It is based on the algorithm proposed
by Skordos [31], and uses a finite difference scheme over adjacent neighbors to evaluate
velocity gradients.

createZouHeBoundaryConditionXD
The local boundary condition introduced by Zou and He [35]. It is very accurate, espe-
cially in 2D simulations, but can have stability issues.

createInamuroBoundaryConditionXD
The local boundary condition by Inamuro Inamuro et al. [24]. It is very accurate in 2D
and 3D, but can have stability issues. In 3D, it is slower than other boundary conditions,
because it solves an implicit equation at every time step.

createExtendedFdBoundaryConditionXD
The approach is the same as in the boundary condition generated by createInterp-

BoundaryConditionXD, but this time, non-linear velocity terms of the Chapman-Enksog
expansion are taken into account. This is rarely useful, but can make a difference in a
very low Mach-number regime.

It should be clear by now, how powerful the abstraction mechanism of the “OnLat-
ticeBoundaryConditionXD” objects is. With the helpof this mechanism, one can treat
local and non-local boundary conditions the same way. Furthermore, they can be used
both for sequential and parallel program execution, as it is shown in Lesson 10. The
mechanism behind this is explained in Lesson 7. The bottom line is that both local
and non-local boundary conditions instantiate a special dynamics object and assign it
to boundary cells. Non-local boundaries additionally instantiate post-processing objects
which take care of non-local aspects of the algorithm.

This mechanism for the instantiation of boundary conditions is generic and easy to
use, but it makes sense only in quite regular geometries. In irregular geometries, even if
you agree on using a staircase approximation of domain boundaries, you will experience
a hard time attributing the right boundary type to each cell. Although off-lattice bound-
aries are under investigation in the OpenLB project, they are not currently available. If
your irregular domain boundaries implement a no-slip condition, your current best bet is
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to implement them through a fullway bounce-back dynamics. In this approach, particle
populations that are opposite to each other are swapped at each iteration step, and no
additional collision is executed. The advantage of this procedure is that it is independent
of the orientation of the domain. The following code implements for example a circular
obstacle with no-slip walls in the center of a 2D domain:

Listing 2.10: Implementation of a bounce-back cylinder in the domain center

<...> definition of the types T and DESCRIPTOR

int nx, ny, r;

<...> initialization of nx and ny, r

BlockLattice2D <T,DESCRIPTOR > lattice(nx ,ny);

5 <...> setup of the lattice

for (int iX=0; iX<nx; ++iX) {

for (int iY=0; iY<ny; ++iY) {

if ((iX -nx/2)*(iX -nx/2) + (iY -ny/2)*(iY -ny/2) < r*r) {

lattice.defineDynamics(iX ,iX ,iY ,iY ,

10 &instances :: getBounceBack <T,D2Q9Descriptor >() );

}

}

}

2.3 Lesson 4: Convert between lattice and physical units

Fluid flow problems are usually given in a system of metric units. For example consider
a cylinder of diameter 3cm in a fluid channel with average inflow velocity of 4m/s.
The fluid has a kinematic viscosity of 0, 001m2/s. The value of interest is the pressure
difference measured in Pa at the front and the back of the cylinder (with respect to the
flow direction). However, the variables used in a LB simulation live in a system of lattice
units, in which the distance between two lattice cells and the time interval between two
iteration steps are unity. Therefore, when setting up a simulation, a conversion directive
has to be defined that takes care of translating variables from physical units into lattice
units and vice versa. In OpenLB, all these conversions are handled by a class called
LBconverter. An instance of the LBconverter is generated with some reference values of
the simulation and the desired discretization parameters. It provides a set of conversion
functions, to enable a fast and easy way to convert between physical units and lattice
units. In addition, it gives information about the parameters of the fluid flow simulation,
such as the Reynolds number or the relaxation parameter ω.

Let’s have a closer look at the input parameters: The reference values represent char-
acteristic quantities of the fluid flow problem. In this example, it is suitable to choose the
cylinder’s diameter as characteristic length and the average inflow speed as characteristic
velocity. The converter internally builds a “dimensionless” system of units in which the
characteristic values are one. The Reynolds number Re is an important parameter of
this system. Furthermore, two discretization parameters latticeL and latticeU are pro-
vided to the converter. latticeL is the discrete space intervall in physical units and from
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this the dimensionless discretization parameter δx is determined: δx = latticeL/charL.
latticeU sets the relation between the discretization parameters for space δx and time δt
in dimensionless units: latticeU = δu = δt/δx. Instead of δt, those working with LBM
often like to specify latticeU . One reason for this is that latticeU is proportional to the
Mach number, and its choice is important to control compressibility effects.

Once the converter is initialized, its methods can be used to convert various quantities
such as velocity, force or pressure. The function for the latter helps us to evaluate the
pressure drop in our example problem, as shown in the the following code snippet:

Listing 2.11: Use of LBconverter in a 3D problem

<...> definition of type T

2 int dimension = 3;

T latticeL = (T) 0.003;

T latticeU = (T) 0.02;

T charNu = (T) 0.001;

T charL = (T) 0.03;

7 T charU = (T) 4.;

T charRho = (T) 1.;

T pressureLevel = (T) 0.;

Lbconverter <T> converter(

12 dimension , latticeL , latticeU ,

charNu , charL , charU , charRho , pressureLevel

);

writeLogFile(converter , ” c o n v e r t e r L o g . dat ”);
cout << converter.getRe() << endl;

17 T omega = converter.getOmega ();

<...> simulation

<...> evaluation of latticeRho at the back and the front of the

cylinder

T pressureDrop = converter.physPressure(latticeRhoFront)

- converter.physPressure(latticeRhoBack);

Line 2: Specify discretization parameters and characteristic values.

Line 11: Instantiate a Lbconverter object.

Line 15: Write simulation parameters and conversion factors in a logfile.

Line 16: Print the Reynolds number Re.

Line 17: The method getOmega computes first the viscosity in lattice units, and then
the relaxation parameter ω.

Line 20: The converter automatically calculates the pressure values from the local
density.
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2.4 Lesson 5: Extract data from a simulation

When the collision step is executed, the value of the density and the velocity are com-
puted internally, in order to evaluate the equilibrium distribution. Those macroscopic
variables are however interesting for the OpenLB end-user as well, and it would be a
shame to simply neglect their value after use. Instead, a BlockLatticeXD sums them
up internally, and in this way keeps track of the average density, average energy (half
the square of the velocity norm) and the maximum value of the velocity norm. These
values are accessed through the method getStatistics() of a blockLattice:

T lattice.getStatistics().getAverageRho()
Returns average density evaluated during the previous collision step.

T lattice.getStatistics().getAverageEnergy()
Returns half the average velocity norm evaluated during the previous collision step.

T lattice.getStatistics().getMaxU()
Returns maximum value of the velocity norm evaluated during the previous collision step.

One needs to take care to properly interpret the value of the discrete time to which
those quantities correspond. Imagine your simulation is at a discrete time t. After
execution of a collision and a streaming step, it is taken from time t to time t + 1.
If after this you evaluate, for example the velocity at a point using the command
lattice.get(iX,iY).computeU(velocity), the computed quantity lives at a time t+1
of the system. The values of the internal statistics, such as lattice.getStatistics().getAverageEnergy()
correspond however to the discrete time t, because they were evaluated prior to the pre-
vious streaming step. This time shift between the state of the system and the value of
the internal statistics can be confusing, and for this reason it would have made sense
to avoid computing the statistics. On the other hand, keeping track of the statistics
takes a neglibibly small amount of time. This feature is therefore included in OpenLB
out of efficiency considerations, and out of convenience, as it offers an easy means of
monitoring the well behaving of a simulation.

Lattice cells whose dynamics is bounce-back, generated by
instances::getBounceBack<T,LATTICE>(),
and cells that don’t execute any collision step, generated by
instances::getNoDynamics<T,LATTICE>()

don’t contribute to the internal statistics of the lattice. The same holds for subdomains
for which, by using the approach taught in Lesson 9, no memory is allocated.

Often, the information provided by the statistics of a lattice in not sufficient, and you
would like to treat the numerical result more generally. To do this, you can extract
data cell-by-cell from the BlockLatticeXD and store it into a scalar- or vector/tensor-
valued matrix, named ScalarFieldXD in the first case and TensorFieldXD in the second.
During parallel program execution, these matrices are parallelized, which makes it very
efficient to analyze large data sets on a parallel machine. The data can then be further
analyzed, for example by computing reductions, such as the average value. Alternatively,
its content can be stored to disk in a binary VTK format for analysis with an external
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tool. Extraction of numerical data from a BlockLatticeXD into a ScalarFieldXD /
VectorFieldXD is taken care of by the DataAnalysisXD class.

The most straightforward way of visualizing the data is to produce a 2D snapshot of
a scalar field. OpenLB creates images of format PPM. On a system of the Unix/Linux
family with the package ImageMagick installed, it further supports automatic conversion
into the more common GIF format (note that ImageMagick is open sourced, and that
it is part of all major Linux distributions). The following example illustrates how a
snapshot of the vorticity distribution in a 2D simulation is created:

Listing 2.12: Produce a GIF image from 2D data

// <...> Create and initialize a variable lattice

// of type BlockLattice2D <T,D2Q9Descriptor >

DataAnalysisBase2D <T,D2Q9Descriptor > const& analysis

4 = lattice.getDataAnalysis ();

ImageWriter <T> imageWriter(” e a r t h ”);
imageWriter.writeScaledGif(” v o r t i c i t y ”, analysis.getVorticity ,

200, 200);

Line 3: Require an analysis object from the lattice. Alternatively, an instance of the
class DataAnalysisXD could be prepared manually. The advantage of requiring
it from the lattice is that, among different implementations of the class Data-

AnalysisXD, the most efficient one is automatically picked out for you. This dis-
tinguishes, for example, between sequential and parallel lattices.

Line 5: Prepare for creation of an image with the colormap ”earth”.

Line 6: Calculate the vorticity on every cell, and visualize it as a GIF image. The
colormap is rescaled to fit the range of vorticity values. The dimension of the
image is rescaled to fit into a 200× 200 bounding box.

Producing 2D images is also useful in 3D simulations. In this case you can extract
data on a plane orthogonal to one of the coordinate axes and produce an image from it.
This is done through the slice methods of data fields:

Listing 2.13: Produce a GIF image from 3D data

// <...> Create and initialize a variable lattice

// of type BlockLattice3D <T,D3Q19Descriptor >

3 DataAnalysisBase3D <T,D3Q19Descriptor > const& analysis

= lattice.getDataAnalysis ();

ImageWriter <T> imageWriter(” e a r t h ”);
// Extract a slice of the plane defined by z=0

int slicePos =0;

8 imageWriter.writeScaledGif (

” v o r t i c i t y ”, analysis.getVorticity.sliceZ(slicePos), 200, 200

);
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Although the computation of statistics and the production of 2D images are very
useful, they are not always sufficient to extract all the required information from the
simulation. When a detailed analysis is required, it makes sense to resort to an external
tool that performs postprocessing of numerical data. For this, the data can be stored in
a file in a VTK format. The function writeVTKData3D stores a scalar field and a vector
field in the same VTK file:

Listing 2.14: Produce a VTK file from 3D data

1 // <...> Create and initialize a variable lattice

// of type BlockLattice3D <T,D3Q19Descriptor >

DataAnalysisBase3D <T,D3Q19Descriptor > const& analysis

= lattice.getDataAnalysis ();

writeVTKData3D( ” l e s s o n 5 ”,
6 ” v o r t i c i t y ”, analysis.getVorticityNorm (),

” v e l o c i t y ”, analysis.getVelocity (), 1., 1. );

The open source software Paraview [5], for example, is very useful for the visualization
of 3D data contained in such a file.

2.5 Lesson 6: Use an external force

In simulations, the dynamics of a fluid is often driven by a force field (gravity, inter-
molecular interaction, etc.) which is space- and time-dependent, and which is possi-
bly computed from an external source, independent of the LB simulation. In order to
optimize memory access and to minimze cache-misses, the value of this force can be
stored in a cell, adjacent to the particle populations. This is achieved by specifying
external scalars in the lattice descriptor (see also Lesson 7). OpenLB offers, by de-
fault, the two descriptors ForcedD2Q9Descriptor and ForcedD3Q19Descriptor. The
dynamics ForcedBGKdynamics accesses the force term defined by these descriptors, and
implements a LB dynamics with body force. The algorithm is taken from Ref. [20] to
guarantee second-order accuracy even when the force field is space and time dependent.
An example for the implementation of a LB simulation with force term is found in the
code examples/poiseuille2d/forced.

2.6 Lesson 7: Understand genericity in OpenLB

OpenLB is a framework for the implementation of lattice Boltzmann algorithms. Al-
though most of the code shipped with the distribution is about fluid dynamics, it is open
to various types of physical models. Generally speaking, a model which makes use of
OpenLB must be formulated in terms of the “local collision followed by nearest-neighbor
streaming” philosophy. A current restriction to OpenLB is that the streaming step can
only include nearest neighbors: there is no possibility to include larger neighborhoods
within the modular framework of the library, i.e. without tampering with OpenLB
source code. Except for this restriction, one is completely free to define the topology
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of the neighborhood of cells, to implement an arbitrary local collision step, and to add
non-local corrections for the implementation of, say, a boundary condition.

To reach this level of genericity, OpenLB distinguishes between non-modifiable core
components, which you’ll always use as they are, and modular extensions. As far as
these extensions are concerned, you have the choice to use default implementations that
are part of OpenLB or to write your own. As a scientific developer, concentrating on
these, usually quite short, extensions means that you can concentrate on the physics of
your model instead of technical implementation details. By respecting this concept of
modularity, you can automatically take advantage of all structural additions to OpenLB.
In the current release, the most important addition is parallelism: you can run your code
in parallel without (or almost without) having to care about parallelism and MPI.

The most important non-modifiable components are the lattice and the cell. You
can configure their behavior, but you are not expected to write a new class which in-
herits from or replaces the lattice or the cell. Lattices are offered in different flavours,
most of which inherit from a common interface BlockStructureXD. The most common
lattice is the regular BlockLatticeXD, which is replaced by the MultiBlockLatticeXD

for parallel applications and for memory-saving applications when faced with irregu-
lar domain boundaries. An alternative choice for parallelism and memory savings is
the CuboidStructureXD, which does not inherit from BlockStructureXD, but instead
allows for more general constructs.

The modular extensions are classes that customize the behavior of core-components.
An important extension of this kind is the lattice descriptor. This specifies the number
of particle populations contained in a cell, and defines the lattice constants and lattice
velocities, which are used to specify the neighborhood relation between a cell and its near-
est neighbors. The lattice descriptor can also be used to require additional allocation of
memory on a cell for external scalars, such as a force field. The integration of a lattice
descriptor in a lattice happens via a template mechanism of C++. This mechanism
takes place statically, i.e. before program execution, and avoids the potential efficiency
loss of a dynamic, object-oriented approach. Furthermore, template specialization is
used to optimize the OpenLB code specifically for some types of lattices. Because of the
template-based approach, a lattice descriptor needs not inherit from some interface. In-
stead, you are free to simply implement a new class, inspired from the default descriptors
in the files core/latticeDescriptors.h and core/latticeDescriptor.hh.

The dynamics executed by a cell are implemented through a mechanism of dynamic
(run-time) genericity. In this way, the dynamics can be different from one cell to another,
and can change during program execution. There are two mechanisms of this type
in OpenLB, one to implement local dynamics, and one for non-local dynamics. To
implement local dynamics, one needs to write a new class which inherits the interface
of the abstract class Dynamics. The purpose of this class is to specify the nature of the
collision step, as well as other important information (for example, how to compute the
velocity moments on a cell). For non-local dynamics, a so-called post-processor needs
to be implemented and integrated into a BlockLatticeXD through a call to the method
addPostProcessorXD. This terminology can be somewhat confusing, because the term
“post-processing” is used in the CFD community in the context of data analysis at the
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end of a simulation. In OpenLB, a post-processor is an operator which is applied to
the lattice after each streaming step. Thus, the time-evolution of an OpenLB lattice
consists of three steps: (1) local collision, (2) nearest-neighbor streaming, and (3) non-
local postprocessing. Implementing the dynamics of a cell through a postprocessor is
usually less efficient than when the mechanism of the Dynamics classes is used. It is
therefore important to respect the spirit of the lattice Boltzmann method and to express
the collision as a local operation whenever possible.

2.7 Lesson 8: Use checkpointing for long duration
simulations

All types of data in OpenLB can be stored in a file or loaded from a file. This includes
the data of a BlockLatticeXD and the data of a ScalarFieldXD or a TensorFieldXD.
All these classes implement the interface Serializable<T>. This guarantees that they
can transform their content into a data stream of type T, or read from such a stream.
Serialization and unserialization of data is mainly used for file access, but it can be
applied to different aims, such as copying data between two objects of different type.
The data is stored in the ascii-based binary format Base64. Although Base64-encoded
data requires 25% more storage space than when a pure binary format is used, this
approach was chosen in OpenLB to enhance compatibility of the code between platforms.
Saving and loading data is invoked by calling the save and load method on the object
to be serialized. These methods take the filename as an optional (but recommended)
argument, as shown below:

Listing 2.15: Store and load the state of the simulation

int nx, ny;

<...> initialization of nx and ny

3 BlockLattice2D <T,DESCRIPTOR > lattice(nx , ny);

// load data from a previous simulation

lattice.load(” s i m u l a t i o n . c h e c k p o i n t ”);
<...> run the simulation

// save data for security , to be able to take up

8 // the simulation at this point later

lattice.save(” s i m u l a t i o n . c h e c k p o i n t ”);

Checkpointing is also illustrated in the example programs bstep2D and bstep3D (Sec-
tion 10.3).

2.8 Lesson 9: Save memory when domain boundaries are
irregular

It is possible in OpenLB to allocate several lattices of type BlockLatticeXD and hide
them behind a common interface, to treat them as the components of a larger lattice.
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This technique can be used to achieve parallelism, as it is described in the next lesson.
Another application is the creation of lattices in which memory is allocated in selected
subdomains only. This is useful for the simulation of flows with complicated domain
boundaries, as no memory needs to be allocated outside the domain. An example pro-
gram for this technique is under development, but is not yet available in the current
release.

2.9 Lesson 10: Run your programs on a parallel machine

OpenLB programs can be executed on a parallel machine with distributed memory,
based on MPI. The approach taught in this lesson uses MultiBlockLatticeXD, which
inherits the interface of BlockStructureXD, and therefore behaves like a common, non-
parallelized lattice. All techniques described in the previous lessons can be used with the
MultiBlockLatticeXD as well, and thus work both in sequential and parallel programs.
The only modification you are required to do, is to swith between BlockLatticeXD and
MultiBlockLatticeXD. This can be achieved through a precompiler directive, as in the
following code:

Listing 2.16: MultiBlockLattice2D for MPI-parallel programs

1 int nx, ny;

<...> initialization of nx and ny

#ifndef PARALLEL_MODE_MPI // sequential program execution

BlockLattice2D <T, DESCRIPTOR > lattice(converter.getNx (),

converter.getNy () );

6 #else // parallel program execution

MultiBlockLattice2D <T, DESCRIPTOR > lattice (

createRegularDataDistribution( converter.getNx (),

converter.getNy() ) );

#endif

To compile an OpenLB program for parallel execution using MPI, modify the file
named Makefile.inc, found in the OpenLB root directory, by removing the hashes
before the lines: #CXX := mpic++, and #PARALLEL MODE := MPI. The modified lines are
shown in Listing 2.17. Execute make clean and make cleanbuild within the desired
program directory to eliminate previously compiled libraries, and recompile the program
by typing the make command. To run the program in parallel, use the command mpirun

-np 2 ./cavity2d. Here -np 2 specifies the number of processors to be used, and in
this case, is set to 2.

Listing 2.17: Makefile.inc edits for MPI-parallel programs

CXX := g++

#CXX := icpc -D__aligned__=ignored

#CXX := mpiCC

CXX := mpic++

5 ...
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PARALLEL_MODE := OFF

PARALLEL_MODE := MPI

#PARALLEL_MODE := OMP

#PARALLEL_MODE := HYBRID
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3 Compilation

3.1 Linux

This complilation starts with a clean Ubuntu 14.04 LTS system. Before installing any
new software, run

sudo apt-get update

to update the package lists, so that the most recent versions of the packages will be
installed.

Next, install the g++ compiler, which you will need to compile C++ programs:

sudo apt-get install g++

To benefit from the efficient parallelization, you will probably want to run the program
on more than one core, so it is recommended to install Open-MPI:

sudo apt-get install openmpi-bin openmpi-doc libopenmpi-dev

For visualization purposes you can use, for example, the following open source soft-
ware:

sudo apt-get install paraview

sudo apt-get install imagemagick

Paraview is an application built on top of the Visualization Tool Kit (VTK) libraries
which can read VTI-files writen by OpenLB. With imagemagick, OpenLB can directly
produce gif-files during simulation.

Finally, go into the root folder of OpenLB and type

make

to compile the software library and all examples. If your system is set up correctly, you
should see a lot compiler messages but no errors.

3.2 Mac

3.3 Windows

An installation guide for Windows using Cygwin can be found in the technical report
TR4: Installing OpenLB in Windows/Cygwin [6].
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4 Geometry

4.1 Material numbers

OpenLB has a general concept for representation of a geometry. A specific number
called the material number is assigned to each cell, defining whether that cell lies on
the boundary or in the fluid domain or whether it is superfluous in the computations.
Figure 4.1 illustrates this using the example of an external flow. The benefit of using
material numbers in flow simulations is the automatic determination of fluid directions
on boundary nodes, as this is not always practical by hand e. g. if material numbers of
a complex geometry are obtained from a stl file.

4.2 Indicator functions

OpenLB provides several functors (see Section 8) for the creation of basic geometric
entities such as cuboids, circles, spheres, cones etc. All indicator functors inherit from
IndicatorFXD and therefore, contain the following functions:

• std::vector<T> operator()(std::vector<S> in): Takes a X-dimensional vec-
tor in in SI coordinates and returns either true if the point is inside the geometry,
false otherwise.

• std::vector<S>& getMin(): Returns the lower corner of an axis aligned bounding
box.

• std::vector<S>& getMax(): Returns the upper corner of an axis aligned bound-
ing box.

• bool distance(S& distance,const std::vector<S>& origin, const std::vector<S>&

direction, int iC = -1): Stores the distance from the origin to the closest
boundary in direction and returns true if found.

The geometries already implemented are:

• 2 Dimensions:

– IndicatorCuboid2D

– IndicatorCircle2D

• 3 Dimensions:

– IndicatorCuboid3D
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Figure 4.1: Material numbers for a 2D channel flow, similar to the example cylinder2d

from Section 10.5 (1=fluid, 2=no-slip boundary, 3=velocity boundary,
4=constant pressure boundary, 5=curved boundary, 0=do nothing).

– IndicatorCircle3D

– IndicatorSphere3D

– IndicatorLayer3D

– IndicatorCylinder3D

– IndicatorCone3D

– IndicatorParallelepiped3D

– IndicatorIdentity3D

These can be combined using the mathematical operators (+ union, − set difference, ·
intersection) to create more complex domains. Furthermore, the class STLreader (6.5)
inherites from IndicatorF3D and can be used in the same manner. A demonstration of
this can be found in the example venturi3D (see Section 10.11).

Besides creating the domain, IndicatorFXD functions can be used to set material
numbers with the help of one of the rename functions in SuperGeometryXD.

/// replace one material with another

void rename(int fromM , int toM);

/// replace one material that fulfills an indicator functor

condition with another

void rename(int fromM , int toM , IndicatorF3D <bool ,T>& condition);

5 /// replace one material with another respecting an offset (

overlap)

void rename(int fromM , int toM , unsigned offsetX , unsigned offsetY

, unsigned offsetZ);

/// renames all voxels of material fromM to toM if the number of

voxels given by testDirection is of material testM
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void rename(int fromM , int toM , int testM , std::vector <int >

testDirection);

/// renames all boundary voxels of material fromBcMat to toBcMat

if two neighbour voxels in the direction of the discrete normal

are fluid voxels with material fluidM in the region where the

indicator function is fulfilled

10 void rename(int fromBcMat , int toBcMat , int fluidMat , IndicatorF3D

<bool ,T>& condition);

4.3 Creating a Geometry

With the information in the last section, a computational domain is created in 6 simple
steps (see also Fig 4.2):

1. Step: Create indicator by

a) Reading an STL-file.

b) Pre-defined geometric primitives, cf. Section 4.2.

c) Combinations of indicators (+,−, ·).
d) Other operators on indicators (e.g. extra layer for boundary).

2. Step: Construct cuboidGeometry. During construction cuboids will be automatically
removed, shrunk and weighted for a good load balance.

3. Step: Construct loadBalancer.

4. Step: Construct superGeometry.

5. Step: Set material numbers.

6. Step: Construct superLattice.

/// 1. Step: Create indicator

STLreader <T> stlreader(” f i l e n a m e . s t l ”, voxelSize);

Cone3D <bool , T> cone(center1 , center2 , radius1 , radius2);

Layer3D <bool , T> boundaryLayer(cone , voxelSize);

5

/// 2. Step: Construct cuboidGeometry.

CuboidGeometry3D <T> cuboidGeometry(indicator , voxelSize ,

noOfCuboids);

/// 3. Step: Construct loadBalancer.

10 HeuristicLoadBalancer <T> loadBalancer(cuboidGeometry);

/// 4. Step: Construct superGeometry.

SuperGeometry3D <T> superGeometry(cuboidGeometry , loadBalancer);
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15 /// 5. Step: Set material numbers.

/// set material number 2 for whole geometry

superGeometry.rename(0,2, geometryIndicator);

/// change material number from 2 to 1 for inner (fluid) cells , so

that only boundary cells have material nunmer 2

superGeometry.rename (2,1,1,1,1); or

20 superGeometry.rename(2,1, fluidIndicator);

/// additional material numbers for other boundary conditions

superGeometry.rename(2,3,1, inflowIndicator);

superGeometry.rename(2,4,1, outflowIndicator0);

superGeometry.rename(2,5,1, outflowIndicator1);

25

/// 6. Step: Construct superLattice.

SuperLattice <T, DESCRIPTOR > sLattice(superGeometry);

Figure 4.2: 6 steps to create a Geometry.

4.4 Excursion: Creating STL-files

The general process chain assumes that the geometry is already given in form of an stl

file, if not created by the IndicatorFXD-functions. Simple geometries can be created
using a CAD tool like FreeCAD [7]. An introduction to modelling with FreeCAD can be
found for example in http://www.youtube.com/watch?v=6RxHCR7TLtI. The general
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Figure 4.3: The geometry for the example cylinder3d from Section 10.5 opened in
FreeCAD.

procedure is mostly similar to the following description.
Firstly, a 2D drawing is created on a selected plane (e. g. the xy plane) using circles and

polygons. In the next step a “height” is assigned to it in the third dimension. Several
such 3d objects can be combined using operations like union, cut, intersection, rotation,
trace, etc. to obtain the target geometry. Creating a square and a circle for the example
cylinder3d in Figure 4.3 is not very difficult, the more complex geometry of a formula
one car, however, can be a challenging and time consuming task.
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5 Lattice Boltzmann Models and Core
Data Structures

5.1 Concept – Data Organization

5.1.1 Cell – BlockLattice – SuperLattice

LBM, in its most widely accepted formulation, is executed on a regular, homogeneous
lattice Ωh with equal grid spacing h ∈ R>0 in all directions. When numerical constraints
require that a given problem is solved on an inhomogeneous grid, it is common to adopt
a so-called multi-block approach: the computational domain is partitioned into sub-grids
with different levels of resolution, and the interface between those sub-grids is handled
appropriately. This approach appears to respect the spirit of LBM well and leads to im-
plementations that are both elegant and efficient, since the execution on a set of regular
blocks is relatively fast compared to an unstructured grid representation of the whole
geometry. For complex domains, a multi-block approach provides another advantage. A
given domain can be represented by a certain number of regular blocks, which leads to
cheap executions times on the one hand, and to a sparse memory consumption on the
other hand. Furthermore, it encourages a particularly efficient form of data parallelism,
in which an array is cut into regular pieces and distributed over the nodes of a parallel
machine. As a result, LB applications can even be run on large parallel machines with
a particularly satisfying gain of speed.

The same spirit is adopted in the OpenLB package, in which the basic datastructure is
a BlockLattice, which represents a regular array of Cells. In each Cell, the q variables
for the storage of the discrete velocity distribution functions fi (i = 0, 1, ..., q − 1) are
contiguous in memory. This data structure is encapsulated by a higher level, object-
oriented layer. The purpose of this layer is to handle groups of BlockLattice, and to
build higher level software constructs in a transparent way. Those constructs are called
SuperLattices.

5.1.2 Descriptor

5.1.3 Dynamics

The core of OpenLB consists of a simple and efficient array-like construct called a
BlockLattice. This object executes an LB algorithm in a very traditional sense, i.e.
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Figure 5.1: Data structures in OpenLB: A number of BlockLattices build a
SuperLattice to adopt higher level software constructs like multi-block, grid
refined lattices and parallelised lattices

the lattice Boltzmann equation is split into two equations, namely the collision step:

f̃hi (t, ~r) = fhi (t, ~r)− 1

3ν + 1/2

(
fhi (t, ~r)−M eq

fhi
(t, ~r)

)
in Ih × Ωh ×Q (5.1)

and the streaming step (propagation step):

fhi (t+ h2, ~r + h2~vi) = f̃hi (t, ~r) in Ih × Ωh ×Q . (5.2)

All Cells of the BlockLattice are iteratively parsed, and a local collision step is exe-
cuted, followed by a non-local streaming step. The streaming step is independent of the
choice of lattice Boltzmann dynamics and remains invariant. On the other hand, the
collision step determines the physics of the model and can be configured by the user, by
attributing a fully configurable dynamics object to each Cell. In this way, it is easy to
implement inhomogeneous fluids which use a different type of physics from one Cell to
another. For each time step the collision and streaming step can be executed separately
in two loops over all Cells or only in one. Both versions are implemented in OpenLB.
Yet, for many applications the method fusing the two loops is preferable.

Although this concept of a BlockLattice is neat and should please the programmer
by being conceptually close to the theory of LBM, it is not sufficiently general to address
all possible issues arising in real life. As a case in point, some boundary conditions are
non-local and need to access neighbouring nodes. Therefore, their implementation does
not fit into the framework of a BlockLattice explained previously. The philosophy of
OpenLB takes for granted that such situations, although they arise, take place in spa-
tially confined areas only, for example the domain boundaries. They may therefore be
implemented by slightly less efficient means, without spoiling the overall efficiency of
the code. Their execution is taken care of by a post-processing step, which, instead of
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stepping over the whole lattice a second time, parses selected Cells only.

5.2 Classic BGK Model

5.3 MRT Model

5.4 Porous Media Model

The permeability parameter K is a physical parameter that describes the macroscopic
drag in a porous media model. For laminar flows it is defined by Darcy’s law:

K = −QµL
∆P

, (5.3)

where Q = UA is the flow rate, U a characteristical velocity, A a cross-sectional area, µ
the dynamic viscosity, L a characteristical length, ∆P the pressure difference in between
starting point and endpoint of the volume.

The porosity-value d ∈ [0, 1] is a lattice-dependent value, d = 0 means the medium is
solid and d = 1 denotes a liquid. According to Brinkman [13, 14], Borrvall and Petersson
[11] and Pingen et al. [28], the Navier-Stokes equation is transformed (see Dornieden
[19] and Stasius [32]). The discrete formulation of d describes a flow region by its
permeability:

d = 1− hdim−1 νLBτLB

K
(5.4)

τLB is the relaxation time, νLB is the discrete kinematic viscosity and h is the length.
ThereforeK ∈ [νLBτLBh

dim−1,∞]. To describe the porosity or permeability of a medium,
a descriptor for porosity must be used, such as:

#define DESCRIPTOR PorousD3Q19Descriptor

Be aware that the porous media model only works in the generic compilation mode. In
the function prepareLattice, dynamics for the corresponding number of the porous
material are defined for example as follows:

void prepareLattice (..., Dynamics <T, DESCRIPTOR >& porousDynamics ,

...){

/// Material =3 --> porous material

sLattice.defineDynamics(superGeometry , 3, &porousDynamics);

4 ...

}

In function setBoundaryValues, the initial porosity value and external field is defined:

void setBoundaryValues (..., T physPermeability , int dim , ...){

// d in [0,1] is a lattice -dependent porosity -value

// depending on physical permeability K = physPermeability

T d = converter ->latticePorosity(physPermeability);
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5 AnalyticalConst3D <T,T> porosity(d);

sLattice.defineExternalField(superGeometry , 3,

DESCRIPTOR <T>:: ExternalField :: porosityIsAt , 1, porosity);

...

}

In the main function, the required parameters as well as the porous media dynamics are
defined:

1 int main(int argc , char* argv []) {

...

T physPermeability = 0.0003;

...

PorousBGKdynamics <T, DESCRIPTOR > porousDynamics(converter ->

getOmega (),

6 instances :: getBulkMomenta <T, DESCRIPTOR >());

...

}

Additionally, the UnitConverter class in src/core/units.h provides useful functions
for conversion between physical and lattice values:

/// converts a physical permeability K to a lattice -dependent

porosity d

2 /// (a velocity scaling factor depending on Maxwellian

distribution

/// function), needs PorousBGKdynamics

T latticePorosity(T K) const

{ return 1 - pow(physLength (),getDim () -1)*getLatticeNu ()*getTau ()/

K; }

7 /// converts a lattice -dependent porosity d (a velocity scaling

factor

/// depending on Maxwellian distribution function) to a physical

/// permeability K, needs PorousBGKdynamics

T physPermeability(T d) const

{ return pow(physLength (),getDim () -1)*getLatticeNu ()*getTau ()/(1-d

); }

5.5 Power Law Model

The two most common deviation from Newton’s Law observed in real systems are pseudo-
plastic fluids and dilatant fluids. By pseudo-plastic fluids the viscosity of the system
decreases as the shear rate is increased. On the other hand, as the shear rate by dilatant
fluids is increased, the viscosity of the system also increases. The simplest model, that
describes this two type of deviations, was proposed by de Waele and Ostwald and is
called the Power Law model that is defined by the viscosity as

µ = mγ̇n−1 . (5.5)
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where m is the flow consistency index, γ̇ the shear rate and n the flow behaviour index.
Then

• n < 1 - pseudoplastic fluids,

• n = 1 - Newtonian fluids,

• n > 1 - dilatant fluids.

To simulate pawer law fluid a descriptor for dynamic omega must be used, such as:

#define DESCRIPTOR DynOmegaD2Q9Descriptor

In function setBoundaryValues, the initial same omega-argument is defined:

AnalyticalConst2D <T,T> omega0(converter.getOmega ());

sLattice.defineExternalField (superGeometry , 1, DESCRIPTOR <T

>:: ExternalField :: omegaBeginsAt , 1, omega0 );

sLattice.defineExternalField (superGeometry , 2, DESCRIPTOR <T

>:: ExternalField :: omegaBeginsAt , 1, omega0 );

4 sLattice.defineExternalField (superGeometry , 3, DESCRIPTOR <T

>:: ExternalField :: omegaBeginsAt , 1, omega0 );

sLattice.defineExternalField (superGeometry , 4, DESCRIPTOR <T

>:: ExternalField :: omegaBeginsAt , 1, omega0 );

In the main function, the power law dynamics is defined:

int main(int argc , char* argv []) {

...

PowerLawBGKdynamics <T, DESCRIPTOR > bulkDynamics(converter.

getOmega (), instances :: getBulkMomenta <T, DESCRIPTOR >(), m, n,

converter.physTime ());

}

In 5.1 the kinematic viscosity is not more constant and then also the omega-argument
is not more constant. With using the power law model 5.5 the kinematic viscosity is
computed in each step as

ν =
1

ρ
mγ̇n−1 . (5.6)

The shear rate γ̇ is possible to compute with using the second invariant of the strain
rate tensor DII

γ̇ =
√

2DII , (5.7)

where

DII =
d∑

α,β=1

EαβEαβ , (5.8)
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where

Eαβ = −

(
1− 1

τ

)
1

2%ν

q−1∑
i=0

fhi ξiαξiβ . (5.9)

This concept is very significant because fhi ξiαξiβ is usually computed during the collision
process and therefore this costs in comparison to other CFD methods at almost no
additional computational cost. The computation of a new omega-argument is done in
src/dynamics/powerLawBGKdynamics.h

1 T computeOmega(T omega0_ , T preFactor_ , T rho_ , T pi_[util::

TensorVal <Lattice <T> >::n] );.

5.6 External Force

In simulations, the dynamics of a fluid is often driven by a force field (gravity, inter-
molecular interaction, etc.) which is space- and time-dependent, and which is possibly
computed from an external source, independent of the LB simulation. In order to opti-
mize memory access and to minimze cache-misses, the value of this force can be stored
in a cell, adjacent to the particle populations. This is achieved by specifying exter-
nal scalars in the lattice descriptor (see also Lesson 7). OpenLB offers by default the
two descriptors ForcedD2Q9Descriptor and ForcedD3Q19Descriptor. The dynamics
ForcedBGKdynamics accesses the force term defined by these descriptors, and imple-
ments a LB dynamics with body force. The algorithm is taken from Ref. [20] to guar-
antee second-order accuracy even when the force field is space and time dependent. An
example for the implementation of a LB simulation with force term is found in the code
examples/poiseuille2d/forced.

As an alternative, the velocity shift forcing scheme developed by Shan and Chen [29]
and improved by Shan and Doolen [30] is also implemented and can be accessed using
ForcedShanChenBGKdynamics.

5.7 Multiphysics Couplings

5.7.1 The Shan-Chen Model

For the simulation of both multiphase and multicomponent flow the Shan-Chen model
is implemented in OpenLB. Since its first introduction [29], many variants of the model
have been developed. In this implementation, there are several forcing schemes [20, 30]
and interaction potentials to choose from.

5.7.2 Implementation of Shan-Chen Two-phase Fluid

The two phases can be simulated on the same lattice instance:

SuperLattice3D <T, DESCRIPTOR > sLattice(superGeometry);
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Then the dynamics are chosen, which have to support external forces:

ForcedShanChenBGKdynamics <T, DESCRIPTOR > bulkDynamics1 (

omega1 , instances :: getExternalVelocityMomenta <T,DESCRIPTOR >() );

Possible choices for the dynamics are ForcedBGKdynamics and ForcedShanChenBGK-

dynamics.
Then the interaction potential is chosen:

ShanChen93 <T,T> interactionPotential;

Viable interaction potentials for one component multiphase flow are ShanChen93, ShanChen94,
CarnahanStarling and PengRobinson. In this model PsiEqualsRho should not be used,
because this would make all the mass gather in the same place.

To enable interaction between the fluid, they have to be coupled, so the kind of
coupling has to be chosen (here: ShanChenForcedSingleComponentGenerator3D) and
the material numbers to which it applies. Since in the case of single component flow
there is only one lattice, it is coupled with itself.

const T G = -120.;

ShanChenForcedSingleComponentGenerator3D <T,DESCRIPTOR > coupling(

G,rho0 ,interactionPotential);

4 sLattice.addLatticeCoupling(superGeometry , 1, coupling , sLattice);

The interaction strength G has to be negative and the correct choice depends on the
chosen interaction potential. When using PengRobinson or CarnahanStarling interac-
tion potential, G is canceled out during computation, so the result is not affected by it
(though it still has to be negative).

Finally, during the main loop the lattices have to interact with each other (or in the
case of only one fluid component the lattice with itself):

1 sLattice.communicate ();

sLattice.executeCoupling ();

These steps are placed immediately after the collideAndStream command.
Examples for the implementation of a LB simulation using the Shan-Chen model for

two-phase flow are examples/phaseSeparation2d and examples/phaseSeparation3d.

5.7.3 Implementation of Shan-Chen Two-component Fluid

Two lattice instances are needed – one for each component (though there is still only
one geometry):

SuperLattice3D <T, DESCRIPTOR > sLatticeOne(superGeometry);

SuperLattice3D <T, DESCRIPTOR > sLatticeTwo(superGeometry);

Then the dynamics are chosen, which have to support external forces:

ForcedShanChenBGKdynamics <T, DESCRIPTOR > bulkDynamics1 (

omega1 , instances :: getExternalVelocityMomenta <T,DESCRIPTOR >() );
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3 ForcedShanChenBGKdynamics <T, DESCRIPTOR > bulkDynamics2 (

omega2 , instances :: getExternalVelocityMomenta <T,DESCRIPTOR >() );

Possible choices for the dynamics are ForcedBGKdynamics and ForcedShanChenBGK-

dynamics. One should keep in mind that tasks like definition of dynamics, external
fields and initial values and the collide and stream execution have to be carried out for
each lattice instance separately. The same is true for data output.

Then the interaction potential is chosen:

1 PsiEqualsRho <T,T> interactionPotential;

In the multicomponent case the most frequently used interaction potential is PsiEqualsRho,
but ShanChen93, for example, would also be a viable choice.

To enable interaction between the fluid, they have to be coupled, so the kind of cou-
pling has to be chosen (here: ShanChenForcedGenerator3D)and the material numbers
to which it applies.

const T G = 3.;

ShanChenForcedGenerator3D <T,DESCRIPTOR > coupling(

G,rho0 ,interactionPotential);

4 sLatticeOne.addLatticeCoupling(superGeometry , 1, coupling ,

sLatticeTwo);

sLatticeOne.addLatticeCoupling(superGeometry , 2, coupling ,

sLatticeTwo);

The interaction strength G has to be positive. If the cosen interaction potential is
PsiEqualsRho, G > 1 is needed for separation of the fluids, but it should not be much
higher than 3 for stability reasons.

Finally, during the main loop the lattices have to interact with each other:

sLatticeOne.communicate ();

sLatticeTwo.communicate ();

sLatticeOne.executeCoupling ();

These steps are placed immediately after the collideAndStream command.
Examples for the implementation of a LB simulation using the Shan-Chen model for

two-component flow are examples/multiComponent2d and examples/multiComponent3d.

5.7.4 Thermal Fluid with Boussinesq Approximation

5.8 Advection Diffusion Equation

Transport of a macroscopic density, energy or temperature is governed by the Advection-
Diffusion-Equation

∂c

∂t
= ∇ · (D∇c)−∇ · (~vc), (5.10)

where c is the considered physical quantity (temperature, particle density), D is the
diffusion coefficient and v is a velocity field affecting c. It is possible to solve this
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equation in terms of LBM by using an equilibrium distribution function different from
the one for the Navier-Stokes Equation [26]

geqi = wiρ

(
1 +

ci · ~v
c2s

)
, (5.11)

that takes the advective transport into account. In this equation wi is a weighting
factor, ci a unit vector along the lattice directions and cs the speed of sound. To use this
implementation the dynamics object has to be replaced by special advection-diffusion
dynamics:

Listing 5.1: advection diffusion dynamics object

AdvectionDiffusionBGKdynamics <T, DESCRIPTOR > bulkDynamics(

2 converter.getOmega (),

instances :: getBulkMomenta <T,DESCRIPTOR >());

Additionally, a different descriptor with fewer lattice velocities is used [22]:

Listing 5.2: advection diffusion descriptor

#define DESCRIPTOR AdvectionDiffusionD3Q7Descriptor

In OpenLB D2Q5 and D3Q7 descriptors are implemented for the Advection-Diffusion
Equation. Since the Advection-Diffusion Equation simulates different physical condi-
tions than the Navier-Stokes-Equation, another set of boundary conditions is needed.
A Dirichlet condition for the density is already implemented, for example to simulate a
boundary with a constant temperature. To apply this condition, firstly a sOnLatticeBoundaryCondition3D
object for the advection-diffusion boundarys has to be constructed:

Listing 5.3: advection diffusion dynamics object

sOnLatticeBoundaryCondition3D <T, DESCRIPTOR >

sBoundaryConditionAD(sLattice);

int nC = sBoundaryConditionAD.get_sLattice ().getLoadBalancer ().

size();

4 sBoundaryConditionAD.set_overlap (1);

for (int iC = 0; iC < nC; iC++) {

OnLatticeAdvectionDiffusionBoundaryCondition3D <T,DESCRIPTOR >*

ADblockBC =

createAdvectionDiffusionBoundaryCondition3D <T,DESCRIPTOR ,

9 AdvectionDiffusionBGKdynamics <T, DESCRIPTOR > >

(sBoundaryConditionAD.get_sLattice ().getExtendedBlockLattice(

iC));

sBoundaryConditionAD.get_CDblockBCs ().push_back(ADblockBC);

}

Finally the boundary condition is set to the desired material number:
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Listing 5.4: advection diffusion descriptor

void prepareLattice (..., SuperLattice3D <T, DESCRIPTOR >& sLattice ,

sOnLatticeBoundaryCondition3D <T, DESCRIPTOR >& bc ,

3 SuperGeometry3D <T>& superGeometry , T omega ,...) {

...

/// Material =3 -> boundary with constant temerature

bc.addTemperatureBoundary(superGeometry , 3, omega);

...

8 }

To apply convective transport, a velocity vector has to be passed. This can either be
done individually on each cell by using:

Listing 5.5: add advective velocity on a cell

T velocity [3] = {vx,vy,vz};

2 ...

cell.defineExternalField (

DESCRIPTOR <T>:: ExternalField :: velocityBeginsAt ,

DESCRIPTOR <T>:: ExternalField :: sizeOfVelocity ,

velocity);

Alternatively, it can be passed to the whole SuperLattice using:

Listing 5.6: add advective velocity on a superlattice

ConstAnalyticalF3D <T,T> velocity(vel);

...

/// sets advective velocity for material 1

4 superLattice.defineExternalField(superGeometry , 1,

DESCRIPTOR <T>:: ExternalField :: velocityBeginsAt ,

DESCRIPTOR <T>:: ExternalField :: sizeOfVelocity ,

velocity)

Here, vel is a std::vector<T>.
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6 Input / Output

During development or even during actual simulation, it might be necessary to parametrize
your program. For this case, OpenLB provides an XML parser, which can read files pro-
duced by OpenGPI [8], thereby providing a nice GUI, if you are so inclined. Details on
the XML format and functions are given in Section 6.6.

The simulation data is stored in the VTK data format and can be further processed
with Paraview. For output tasks that are performed only once during the simulation,
it is recommended to write the data sequentially. Commonly, the geometry or cuboid
information is one of these tasks. In contrast to the parallel version, it is easier to use
and does not produced unnecessary data overhead. However, if the output is performed
regularly in a parallel simulation, the performance may slow down using the sequential
output method. Therefore, OpenLB has implemented a parallel data output functional-
ity. Every thread writes the data of its cuboids in one VTI file. One ends up with several
VTI files, that contains partial simulation data. The key is to use an appropriate PVD
file, which links the VTI files to produce a meaningful output. The technical aspects
are presented in Section 6.1, whereas the usage is demonstrated with an example in
Section 6.2.

6.1 The Output Data Structure in Parallel Simulations

OpenLB simulation data is stored in the VTK data format [9]. This format has XML
structure and its data can be written either in human readable ASCII or binary Base64

code. The implemented parallel output structure contains a PVD file, which consists of
links to the real data written by the threads and stored in VTI files. An example of a
PVD file is shown in Figure 6.1.

For certain time steps, every thread writes its data to a VTI file. Since they do their
work independently of each other, the writting happens in parallel. These data files are
linked in the aforementioned PVD file and the hierarchical structure of the simulation
data is built.

It is still possible to write VTK files sequentially. This method does not need the
hierarchical overhead and is much easier to use. Commonly, data like geometry, rank and
cuboid is written only once during the simulation. In order to prevent big data overhead
and complicated structures, the sequential routine is preferred for those functors.
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Figure 6.1: The PVD file consists of links to the simulation data, which is stored in VTI
files. Since every thread writes its data to a single VTI file, this program
was executed by 7 threads.

6.2 Data Output to VTK File Format

VTK data files can be visualized and postprocessed with the free software Paraview [5],
which offers a nice graphical interface. The following listing shows, on the one hand,
how to write VTK files sequential for a geometry and cuboid functors. On the other
hand, the usage of the parallel write-routine for velocity and pressure functors is shown.

// binary data format is default

SuperVTKwriter3D <T> vtkWriter(” FileNameGoesHere ”);
3 // ASCII data format is obtained by

// SuperVTKwriter3D <T> vtkWriter (" FileNameGoesHere",false);

SuperLatticePhysVelocity3D <T, DESCRIPTOR > velocity(sLattice ,

converter);

SuperLatticePhysPressure3D <T, DESCRIPTOR > pressure(sLattice ,

converter);

vtkWriter.addFunctor( velocity );

8 vtkWriter.addFunctor( pressure );

if (iT==0) {

SuperLatticeGeometry3D <T, DESCRIPTOR > geometry(sLattice ,

superGeometry);

SuperLatticeCuboid3D <T, DESCRIPTOR > cuboid(sLattice);

13 // writes the geometry and cuboid no. to a single VTI file

sequentially

vtkWriter.write(geometry);

vtkWriter.write(cuboid);

// mandatory to call the following write()-method

vtkWriter.createMasterFile ();

18 }

if (iT%converter.numTimeSteps (.3) ==0) {
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// writes the added functors in parallel to vtk files

vtkWriter.write(iT);

23 }

6.3 Write Images in OpenLB

OpenLB is able to output image data directly. This is helpful to get a brief overview of
how the simulation is going on without using external visualization tools. Note that the
function call creatMasterFile() in iT == 0 is essential to write parallel vtk data.

Note that only 1D data or equivalent scalar-valued data can be represented by images.
Hence, for vector-valued data, e.g. velocity, it is important to take an appropriate norm.
This step transforms the vector into a scalar and the data becomes one dimensional as
required.

For 2D application it is straight forward to generate images, since every point of the
computational grid represents a pixel. However, for 3D applications this assignment
fails. OpenLB allows to reduce the 3D grid with the help of a plane. The resulting
plane represents then the image by assigning plane points to pixels.

An example of how to take a norm and how to place a plane is shown below

// get the pointwise l2 norm of velocity

2 SuperEuklidNorm3D <T, DESCRIPTOR > normVel( velocity );

// put a plane with normal (0,0,1) in the 3 dimensional data

BlockLatticeReduction3D <T, DESCRIPTOR > planeReduction( normVel , 0,

0, 1 );

BlockGifWriter <T> gifWriter;

// gifWriter.write(planeReduction , 0, 0.7, iT , "vel"); // static

scale

7 gifWriter.write( planeReduction , iT, ” v e l ” ); // scaled

6.4 Console output

In OpenLB, there is an extension of default ostreams, which handles parallel output and
prefixes each line with the name of the class that produced the output. Shown below is
the output of one of the example programs from Section 10:

$ ./cylinder3d

[main] Nx=252; Ny=43; Nz=43

[BlockGeometry3D] the model is correct!

[BlockGeometry3D] wrote vti-File

[BlockGeometryStatistics3D] materialNumber=0; count=1892

[BlockGeometryStatistics3D] materialNumber=1; count=416970

[main] step=0; t=0; avEnergy=0; avRho=1; uMax=0

[reIniGeometry] step=0; scalingFactor=3.37314e-12

[main] step=50; t=2.5; avEnergy=6.5764e-08; avRho=0.999936; uMax=0.00507172
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[computeResults] deltaP=-2.0906e-10

It is easy to determine which part of OpenLB has produced a specific message. This
can be very helpful in the debugging process, as well as for quickly postprocessing console
output or filtering out important information without any need to go into the code.
Together with OpenLB’s semi-CSV style output standard, it is possible to easily visualize
any data imaginablein diagrams, such as convergence rate, data errors, or simple average
mass density.

void MyClass :: print() {

OstreamManager clout(std::cout , ” MyClass ”);
3 ...

clout << ” s t e p=” << step << ” ; avRho=” << avRho

<< ” ; maxU=” << maxU << std::endl;

}

Using the OstreamManager is easy and consists of two parts. First, an instance of the
class OstreamManager is needed. The one created here in Line 2 is called clout like all
the other instances in OpenLB. This word consists of the two words class and output
Moreover, it is quite similar to standard cout. The constructor receives two arguments:
one describing the ostream to use, the other one setting the prefix-text. In line 4 the
usage of an instance of the OstreamManager is shown. There is not much difference
in usage between a default std::cout and an instance of OpenLB’s OstreamManager.
The only thing to consider is that a normal "\n" won’t have the expected effect, so use
std::endl instead.

In classes with many output producing functions however, you wouldn’t like to instan-
tiate OstreamManager for every single function, so a central instantiation is preferred.
This is done by adding a mutable OstreamManager object as a private class member
and initializing it in the initialization list of each defined constructor. An example im-
plementation of this method can be found in src/utilities/timer.{h,hh}.

Another great benefit of OstreamManager is the reduction of output in parallel. Run-
ning a program using cout on multiple cores normally means getting one line of output
for each process. OstreamManager will avoid this by default and display only the output
of the first processor. If this behavior is unwanted in a specific case, it can be turned off
for an instance named clout by clout.setMultiOutput(true).

Further scenarios that are not yet implemented in OpenLB can make use of different
streams like the ostream std::cerr for separate error output, file streams, or something
completely different. In doing so, every stream, of course, needs its own instance.

6.5 Read and write STL files

OpenLB offers the possibility to read and write geometry data in the Standard Trian-
gulation Language, STL for short. The OpenLB class ”stlReader” provides the desired
functionality. In the case that the .stl-file you want to read is too large, you can use
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Paraview’s filter ”Decimate” to reduce the number of facets.

The constructor of the class STLreader takes 2 necessary and 3 optional arguments.

STLreader(const std:: string fName , T voxelSize , T stlSize=1,

unsigned short int method = 2, bool verbose = false);

• fName: The filename of the STL file to be read.

• voxelSize: The intended spatial step size for the simulation in SI units (m).

• stlSize: Conversion factor if the STL file is not given in SI units. E.g. STL file in
cm → stlSize = 0.01.

• method : Switch between methods for determining inside and outside of geometry.

– default: fast, less stable

– 1: slow, more stable (for untight STLs)

• verbose: Switch to get more output.

Functionality: The STL file is read and stored in the class STLmesh. A class Octree
is instantiated of side-length rad = 2j−1 · voxelSize, j ∈ N with j such that a cube with
diameter 2rad covers the entire STL. Intersections of triangles and the nodes of the
Octree are computed and an index of the respective triangles is stored in each node. A
node is a leaf if either rad = voxelSize or if it does not contain any triangles.
In a second step, it is determined whether a leaf is inside the STL geometry by one of
the following methods:

• (Default) One ray in Z-direction is defined for each Voxel in XY-layer. All nodes
are indicated on the fly (faster, less stable).

• Define three rays (X-, Y-, Z-direction) for each leaf and count intersections with
STL for each ray. Odd number of intersection means inside. The final state is
decided by a majority vote (slower, more stable).

6.6 XML parameter files

In OpenLB essential simulation parameter can be placed in a XML. This is a useful
feature, since once a program is compiled the parameter can be changed through the
XML file and recompilation is redundant. As a consequence whenever parameter fitting
or general simulations are wanted, this approach can help you editing only the XML file.
The parsing is implemented in the the header tile io/xmlReader.h.

The general format for the XML files is:
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<Param >

<Mesh >

3 <lx >1</lx >

<ly >3</ly >

</Mesh >

<VisualizationImages >

<Filename >image </ Filename

8 </VisualizationImages >

</Param >

All parameters need to be wrapped in a <Param> tag. To open a config file, you just
pass a string with the filename to the class constructor of XMLreader.

1 string fName(”demo . xml”);
XMLreader config(fName);

int lx, ly;

std:: string imagename;

6 config[”Mesh”][” l x ”].get(lx);
XMLreader meshconfig = config[”Mesh”];

ly = config[”Mesh”][” l y ”].get <int >();
config[” V i s u a l i z a t i o n I m a g e s ”][” Fi lename ”].get(Filename);

First, an XMLreader object config is created. There are multiple ways to access the
configuration data. To select the tag you would like to read, you just use an associative
array like syntax as shown above.

To get a specific value out of an XML parameter file, there are multiple methods. One
is to pass a predefined variable to the method get(), which automatically converts the
string in the config file to the correct type, if it is one of the basic C++ types. The
other method is to call get without a parameter but with the needed type as a template
paramenter, like get<int>(). For large subtrees with lots of parameters, you can also
create a subobject. For this, you just have to reassign your selected subtree to a new
XMLreader-object as is done above for Mesh.
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7 Visualization with Paraview

As already mentioned, there are several data formats that can be used in Paraview. Use
‘File – Open’ and choose the set of data you want to use. If there is a plus in front of
the file name, choose this file to open the numbered collection of single files. The chosen
files should now be part of the ‘Pipeline Browser’, which should be on the left hand side
(if any of the panels are missing you can add them in the ‘View’ menu on the top). Click
on ‘Apply’ in the ‘Properties’ panel (usually located below the ‘Pipeline Browser’) after
opening.

Your data should now be visible in the center window. From within the ‘Properties’
or in one of the top tool bars, you can change the ‘Coloring’ properties, which selects
what shall be displayed (e.g. physical velocity, phys pressure), which part of this choice
shall be displayed (e.g. magnitude, x-value) and the way it is colored.

Make sure that ‘3D’ is part of the tool bar directly above the window where you can
see your objects. If you cannot find it click on ‘2D’ which should be written instead
and change it to ‘3D’ by doing this. The commands for moving your whole set of visible
objects and thus changing the perspective are the following:

• Using the mouse wheel, you can zoom in and out.

• Using the right mouse button or ‘Ctrl + left mouse button’, you can move the
object to the background or the foreground. In comparison to zooming in and out,
this changes the level of the 3D-effect.

• Using the left mouse button allows you to turn the object.

• Clicking the mouse wheel allows you to move the object centre.

Of course you can also stick to ‘2D’, although in this case the mouse commands might
change a bit.

You can visualize the temporal development of your simulation using the ‘Play’ button
and the related buttons directly next to it. If you want to go to a certain time step, use
the input field ‘Time’, which is also located here.

To manipulate your data in Paraview numerous so called ‘Filters’ are provided in the
‘Filters’ menu in the top bar.

7.1 Clip

With this filter, you can cut off parts of your objects, for example, to make it possible
to look inside the geometry. There are several tool options to determine which part is
cut off. You can choose between plane, box and sphere.
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If the “wrong” side is cut off, check ‘inside out’ to make the other side visible.

Contour

Using ‘Contour’ you can show lines or planes of certain data values, which you can set.

7.2 Glyph

If you have a point data set, you can represent it as spheres using the filter ‘Glyph’ and
choosing ‘Sphere’ as setting for ‘Glyph Type’. Using the resolution settings, you can
smooth the surface to make the sqhere look more rounded.

There are alternative ways to represent the data. As an example, arrows can be used
to show the direction of a velocity. Check ‘Glyph Type’ for further possibilities.

7.3 Stream Tracer

Using the Stream Tracer allows you to draw flow lines.

Temporal Interpolator

Using this filter, you can interpolate between sets of data.

7.4 Transform

Using ‘Transform’ you can change the position and orientation of your objects, as well
as the scale.
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8 Functors – A General Concept For
Input and Output of Data

Roughly speaking, a functor is a class that behaves like a function. Objects of a func-
tor class perform computations by overloading the operator(). One big advantage of
functors over functions is that they allow the creation of a hierarchy and bundle ”classes
of functions”. Moreover, parameters that are constant over several function evaluations
only need to be passed once during instantiation.

8.1 Functors in OpenLB

In OpenLB, functors are used for a wide variety of tasks. They are divided by the unit
system they are working in, making extensive use of inheritance, templates and other
advantages that comes with C++.

GenericF stands at the top of the hierarchy and is a virtual base class that provides
interfaces. Template parameter S defines the input data type and template parameter T,
the output. The essential interface is the unwritten (pure virtual function) operator().
Commonly, this ()−operator is used as an evaluation of a certain functor, e.g. pressure
at position x.

template <typename T, typename S>

class GenericF {

protected:

GenericF(int targetDim , int sourceDim);

5 std:: string _name;

private:

int _n;

int _m;

public:

10 std:: shared_ptr < GenericF <T,S> > _ptrCalcC;

// has to be implemented for ’every’ derived class

virtual bool operator () (T output[], const S input []) = 0;

};

AnalyticalF is a subclass of GenericF for functions that lives in SI-units, e.g. for set-
ting velocities in m/s. Parts of this class are, for example, constant, linear, interpolation

55



and random functors, which can be evaluated by the ()−operator. There is a Ana-
lyticalCalc class, which inherits from AnalyticalF and establishes arithmetic operations
(+,−, ∗, /) between every type of AnalyticalF.

IndicatorF is an other subclass of GenericF that returns a vector with elements 0 or 1.
Thes are used to construct geometries, e.g. IndicatorSphere3D creates a sphere using an
origin and radius. Evaluation returns 1, if the vector is inside the sphere and 0 elsewise.
In analogy to the AnalyticalF, there are arithmetic operations as well, but with a slightly
different definition. The returned object of an addition is the union, multiplication
returns the intersection and subtraction represents the relative complement.

BlockLatticeF/SuperLatticeF is just an other subclass of GenericF. These functors
are defined on the lattice and commonly represent the raw simulation data, e.g. pressure,
velocity. SuperLattice functors are part of the parallelism layer and they delegate the
calculations to the corresponding BlockLattice functors.
Examples are SuperLatticeDensity3D : Ω → R and SuperLatticeVelocity3D : Ω →
R3, for a domain Ω ⊂ N3

InterpolationF functors establish conversion between the analytical and lattice func-
tors. They are very important in setting analytical boundary conditions, by evaluating
the given analytical function on the lattice points. The reverse direction - from lattice to
analytical functors - is where this functor receives its name, as the conversion is achieved
by interpolation between the lattice points.

8.2 How are functors used?

The concept of functors benefits from generality and therefore, they are used for many
applications.

Data output / data extraction Velocity, pressure, cuboids and other information
can be extracted from the lattice using predefined functors. All they need to know is a
SuperLattice and converter; if dimensions are wanted.

Listing 8.1: Code example for calculating velocity and pressure using functors.

// Create the data -reading functors ...

2 SuperLatticePhysVelocity3D <T, DESCRIPTOR > velocity (&sLattice , &

converter);

SuperLatticePhysPressure3D <T, DESCRIPTOR > pressure (&sLattice , &

converter);

// geometries are often constructed by simple geometries

IndicatorSphere3D <bool ,T> mySphere(origin ,1);
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Interpolation Interpolation is necessary in order to start a simulation smoothly or
to obtain velocities between those computed on the lattice points. For the start of a
simulation, the inflow velocity is smoothly increased from 0 to the desired velocity using
a variable called frac. It is clear that frac should be 0 at the beginning of the simulation
and 1 after a certain number of time steps iTmaxStart.

Listing 8.2: Code example for smoothly starting the inflow velocity in cylinder3d with a
x5 curve.

PolynomialStartScale <T,int > nPolynomialStartScale(iTmaxStart , T(1)

);

std::vector <int > iTvec(1,iT);

T frac = nPolynomialStartScale(iTvec)[0];

Another case for interpolation functors is the conversion of a given analytical functor,
such as an analytical solution to a SuperLattice functor. Afterwards, the difference can
be easily calculated with the help of the functor arithmetic. Finally, specific norms
implemented as functors facilitate analysis of convergence. Application of this is shown
in the example poiseuille2d, which is discussed in 10.9

Setting boundary values Boundary cells are marked by a certain material number
in the SuperGeometry. Using a functor, velocities can be set simulatneously on all
cells of this material. First, a vector that characterizes the maximum flow velocity
and its directions is necessary. Then, a special functor uses this vector to initialize a
Poiseuille profile. The direction can be extracted in the case of axis-parallel inflow regions
automatically from the SuperGeometry. In the last step, the SuperLattice initializes all
cells of a certain material given by the SuperLattice with the velocities computed by the
functor.

Listing 8.3: Code example for setting a Poiseuille velocity profile and a constant pressure
boundary in cylinder3d.

// Creates and sets the Poiseuille inflow profile using functors

2 std::vector <T> maxVelocity (3,0);

maxVelocity [0] = 2.25* frac*converter.getLatticeU ();

SquarePoiseuilleInflow3D <T> poiseuilleU(superGeometry , 3,

maxVelocity);

sLattice.defineU(superGeometry , 3, poiseuilleU);

Flux functor The flux of a quantity is defined as the rate at which this quantity
passes through a fixed boundary per unit time.

As a mathematical concept, flux is represented by the surface integral of a vector field,

Φ =

∫
~F · d ~A

where ~F is a vector field, and d ~A is an area element of the surface A, in the direction of
the surface normal ~n.
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The flux functor calculates the discrete flux

Φh = h2
∑
i

~fi · ~n

with h as the grid length of the surface and ~fi the vector of the quantity at grid point i.
As the grid of the area has to be independent from the lattice, the value of ~fi will be

interpolated from the surrounding lattice points.

So, for the SuperLatticeFlux functor a surface needs to be defined, here a plane, and an
SuperLatticeF functor.

The plane can be defined by a circle indicator, a starting point and a normal, or a
starting point and two vectors. Optionally, you can set a radius for the plane. The
grid length of the area can be defined. The default for this value is the lattice length.
Another optional feature is a material list, so that only the points with the predefined
material numbers are used for calculation (the default material number is 1). Next is a
SuperLatticeF functor, which defines the quantity you want to measure.

Step 1: Define the plane by
a) a circle indicator

IndicatorCircle3D <T,T> circleInd(center1 , center2 , center3 ,

normal1 , normal2 , normal3 , radius);

b) a normal, a starting point and, optionally, a radius

std::vector <T> startingPoint , planeNormal;

T radius;

c) two vectors, a starting point and, optionally, a radius

std::vector <T> startingPoint , planeVectorU , planeVectorV;

T radius;

Step 2 (optional): Define the grid length of the plane

T h = converter.getLatticeL ();

Step 3 (optional): Define the material list

std::list <int > materials;

Step 4: Create a SuperLatticeF functor
a) for velocity flow

SuperLatticePhysVelocity3D <T, DESCRIPTOR > vel(sLattice , converter)

;
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b) for pressure

SuperLatticePhysPressure3D <T, DESCRIPTOR > press(sLattice ,

converter);

c) or any other SuperLatticeF functor

SuperLatticeF3D <T, DESCRIPTOR > ...;

Step 5: create a SuperLatticeFlux functor (depending on how the plane was defined)
a)circle indicator

SuperLatticeFlux3D(SuperLatticeF3D <T, DESCRIPTOR >& f,

SuperGeometry3D <T>& sg , IndicatorCircle3D <bool ,T>& circle ,

std::list <int > materials , T h = T());

b)normal and startingPoint

SuperLatticeFlux3D(SuperLatticeF3D <T, DESCRIPTOR >& f,

2 SuperGeometry3D <T>& sg , std::vector <T>& n, std::vector <T>

A,

std::list <int > materials , T radius = T(), T h = T());

c)two vectors and startingPoint

SuperLatticeFlux3D(SuperLatticeF3D <T, DESCRIPTOR >& f,

2 SuperGeometry3D <T>& sg , std::vector <T>& u, std::vector <T>&

v,

std::vector <T> A, std::list <int > materials , T radius = T()

,

T h = T());

In addition to the arguments for the plane, the constructor takes 2 necessary and 3
optional arguments.

• f: the functor defined in Step 4

• sg: the SuperGeometry3D object

• materials: default is material number 1

• radius: default is the diameter of the geometry

• h: default is the lattice length

Step 6: Get results by using the operator()

1 int input [3];

T output [5];

flux(output , input);
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• output[0] : flow rate, or force (if quantity has dimension 1)

• output[1] : size of the area

• output[2..4] : flow vector (ie. vector of summed quantities)

Because, in general, the SuperLattice functor is either the velocity functor or the pres-
sure functor, Step 4 and Step 5 can be combined. The constructors, depending on
how the plane is defined, are identical to the ones used for SuperLatticeFlux, only
the SuperLatticeF3D<T, DESCRIPTOR> argument is replaced by the two arguments
SuperLattice3D<T, DESCRIPTOR> and LBconverter<T>.

Step 4.1): Combined steps for velocity flow

SuperLatticePhysVelocityFlux3D <T, DESCRIPTOR >

2 vFlux(SuperLattice3D <T, DESCRIPTOR > sLattice , LBconverter <

T> converter ,

...);

Step 4.2): Combined steps for pressure

SuperLatticePhysPressureFlux3D <T, DESCRIPTOR >

2 pFlux(SuperLattice3D <T, DESCRIPTOR > sLattice , LBconverter <T>

converter ,

...);

For these two functors there is a print() function.

Step 5.1): Output for velocity functor (region size[m2], volumetric flow rate and mean
velocity)

vFlux.print(std:: string fluxSiScale , std:: string meanSiScale);

• fluxSiScale: ’ml/s’ or ’l/s’ or ’ ’ (default=m3/s)

• meanSiScale: ’mm/s’ or ’ ’ (default=m/s)

Step 5.2): output for pressure functor (region size[m2], force and pressure)

pFlux.print(std:: string fluxSiScale , std:: string meanSiScale);

• fluxSiScale: ’MN’ or ’kN’ or ’ ’ (default=N)
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• meanSiScale: ’mmHg’ or ’ ’ (default=Pa)

Shown below are two code examples for the implementation of the flux functor in cylin-
der3d.

Example 1: circle indicator, material list and SuperLatticeFlux3D

Listing 8.4: Code example for getting the volumetric flow rate of the velocity flow in
cylinder3d.

std::list <int > materials;

materials.push_back (1);

materials.push_back (6);

4

IndicatorCircle3D <bool ,T> circleInd (2., 0.205 , 0.205 , 1., 1., 0.,

2.);

SuperLatticePhysVelocity3D <T, DESCRIPTOR > vel(sLattice , converter)

;

SuperLatticeFlux3D <T, DESCRIPTOR > flux(vel , superGeometry ,

circleInd);

9 clout << ” f l owRate=” << flux(input)[0];

clout << ” r e g i o n S i z e=” << flux(input)[1] << endl;

Example 2: normal, startingPoint and SuperLatticePhysPressureFlux3D

Listing 8.5: Code example for getting the pressure on a area in cylinder3d.

std::vector <T> A(3,T()), n(3,T());

A[0]=2.;A[1]=0.205;A[2]=0.205;

n[0]=1.;n[1]=1.;n[2]=0.;

5 SuperLatticePhysPressureFlux3D <T, DESCRIPTOR > pFlux(sLattice ,

converter ,

superGeometry , n, A);

pFlux.print ();

8.3 Functor arithmetic

Simulation data often needs heavy post-processing, in order to get relevant data. With
the functor arithmetic OpenLB provides a very user friendly tool to process simulation
data during simulation time. E.g. it facilitates the computation of relative errors.

Listing 8.6: Basic showcase for arithmetic operations for AnalyticalF2D.

AnalyticalConst2D <T, T> one (1.);
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AnalyticalConst2D <T, T> two (2.);

3 AnalyticalIdentity2D <T, T> tmp(one + two);

// or equivalent

AnalyticPlus2D <T,T> aPlus(one ,two);

AnalyticalIdentity2D <T, T> tmp2(aPlus);

To access the computed data, the interface operator() is used. Obviously, this is a
very rudimentary example. However, it extends the functor concept in a natural way by
arithmetic operations.

Listing 8.7: Computation of a relative error with respect to L2-norm.

int input [1];

T normAnaSol [1], absErr [1], relErr [1];

// define analytical solution: R^3 -> R

4 // for snake of simplicity it is a constant function ,

// however it may be any specialization of AnalyticalF3D <T,T>

AnalyticalConst3D <T, T> dSol (1.);

// get analytical solution on the lattice: N^3 -> R

SuperLatticeFfromAnalyticalF3D <T, DESCRIPTOR > dSolLattice( dSol ,

lattice );

9 // get density out of simulation data

SuperLatticeDensity3D <T, DESCRIPTOR > d( lattice );

SuperL2Norm3D <T, DESCRIPTOR > dL2Norm( dSolLattice - d,

superGeometry , 1 );

SuperL2Norm3D <T, DESCRIPTOR > dSolL2Norm( dSolLattice ,

superGeometry , 1 );

14 dL2Norm( absErr , input );

dSolL2Norm( normAnaSol , input );

relErr [0] = absErr [0] / normAnaSol [0];

clout << ” d e n s t i t y−L2−e r r o r ( abs )=” << absErr [0] << ” ; ”
<< ” d e n s t i t y−L2−e r r o r ( r e l )=” << relErr [0] << std::endl;

For more detail, see the source code of example 10.9.
The following explains the memory management of the functor arithmetic in OpenLB.

It is strongly based on the example shown in Listing 8.6 and in particular on its third
line. First, the operator+() declared in AnalyticalF2<T,S> is called by the object one,
as shown in Figure 8.1. Its implementation is realized in the file analyticCalc2D.hh.
Basically, there happens two things. A new object of type AnalyticalPlus2D<T,S>

will be created and a shared ptr to it, is stored into a variable of the object one.
The shared ptr is used to free the memory allocated by the new object. By now,
object one cares about the arithmetic operation. However, if one is used for other
arithmetic operations, its shared ptr may be overwritten, which can causes runtime
errors. It would be more intuitive if tmp cared about memory management. As a
consequence, tmp should hold the shared ptr, which is achieved in two steps. First, con-
structing an AnalyticalPlus2D<T,S> object, moves the shared ptr from object one to
AnaltycialPlus2D<T,S>. Then by constructing tmp the shared ptr moves once again to
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Figure 8.1: Inheritance for AnalyticCalc2D is shown.

the created AnalyticalIdentity2D<T,S>. Finally, tmp holds the shared ptr and thus
is responsible for the memory management.
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9 Parallel program execution

Whenever possible, an OpenLB application should be written in such a way that it
works well on both serial and parallel platforms. As applications in computational
fluid dynamics require a large amount of resources, it is essential to have the flexibility
to switch to a parallel platform easily. This Section concentrates on parallelism on
distributed memory machines using MPI, as distributed memory is the most common
model on large-scale, parallel machines. Furthermore, MPI parallelism has become an
important option even on simple desktop computers, which quite often possess multi-core
processors. In this case, you will often find that MPI is actually more efficient and/or
easier to obtain in a non-commercial compiler setting than OpenMP. Fortunately, it is
straightforward to write parallelizable applications with OpenLB if a few basic concepts
are respected. As a matter of fact, all example programs in the OpenLB distribution
can be compiled with MPI and executed in parallel.

To achieve parallelism with programs that have the look and feel of serial applications,
OpenLB distinguishes two classes of data. Data which is spatially distributed, such as
the lattice and scalar- or vector-valued data fields, is handled through a data-parallel
paradigm. The data space is partioned into smaller regions that are distributed over the
nodes of a parallel machine. In the following, these types of structures are referred to as
data-parallel strucures. Other data types that require a small amount of storage space
are duplicated on every node. These are referred to as duplicated data. All native C++
data types are automatically duplicated by virtue of the Single-Program-Multiple-Data
model of MPI. These types should be used to handle scalar values, such as the parameters
of the simulation, or integral values over the solution (e.g. the average energy).

For output on the console it is strongly recommended to use OpenLB’s OstreamManager
since it can help reducing output in case of parallel execution (cf Chapter 6.4).

9.1 Data-parallel structures

Obtaining data-parallelism in OpenLB is as easy as using the MultiBlockLatticeXD

instead of a BlockLatticeXD, a MultiScalarFieldXD instead of a ScalarFieldXD, and
a MultiVectorFieldXD instead of a VectorFieldXD. In most common situations, only
the case of the BlockLatticeXD actually needs to be treated explicitly, and this is
handled in a single line of code, as it is shown in Lesson 10 (Section 2.9). Scalar- and
vector-valued fields are usually generated automatically, as in the following expression:

// This yields an object of type ScalarFieldXD in serial ,

2 // and an object of type MultiScalarFieldXD in parallel

lattice.getDataAnalysis ().getVelocity ();
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The difference between the serial and the parallel case is handled transparently by ad-
dressing the data fields through the virtual base ScalarFieldBaseXD and VectorField-

BaseXD, which is the same for the serial and the parallel data type:

// The following instruction works for in serial as well as

2 // in parallel , because ScalarFieldBase2D is an abstract

// base to both ScalarField2D and MultiScalarField2D

ScalarFieldBase2D <T,Lattice > const& velocity

= lattice.getDataAnalysis ().getVelocity ();

The most important rule to respect when handling data-parallel types in application
programs is to never implement explicit loops over space dimensions. Although the
resulting code does yield the expected result, it is likely to run very slowly. The reason
for this is that the loops cannot be parallelized, and the code therefore runs at the speed
of a single processor, or even slower because of the implied MPI communications. An
example is given in Section 6, where it is shown how to use predefined functions for I/O
operations on data-parallel structures, instead of explicit space loops.

9.2 Duplicated data types

The rule for duplicated data types is simple: all data types except for the data-parallel
ones mentioned in the previous section are duplicated. The three following rules need
to be respected to ensure that the value from some input is properly duplicated over
processors:

1. The call to olbInit at the beginning of a program ensures distribution of input
from the command-line.

2. The use of cin ensures distribution of input from the terminal.

3. The use of olb ifstream instead of fstream ensures distribution of input from a
data file.
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10 The example programs

All the demo codes can be compiled with or without MPI, with or without OpenMP,
and executed in serial or parallel.

10.1 aorta3d

In this example, the fluid flow through a bifurcation is simulated. The geometry is
obtained from a mesh in STL-format. With Bouzidi boundary conditions, the curved
boundary is adequately mapped and initialized entirely automatically. A Smagorinsky
turbulent BGK model is used for the dynamics to stabilize the simulation for low resolu-
tions. The output is the flux computed at the inflow and outflow region. The results have
been validated through comparison with other results obtained with FEM and FVM.

10.2 bifurcation3d

The bifurcation3d example simulates particulate flow through an exemplary bifurcation
of the human bronchial system. The geometry is a splitting pipe, with one inflow and
two outflows. The fluid is transporting micrometer scale particles and the escape and
capture rate is computed. There exist two implenetations of the problem. The first one
is a Euler-Euler ansatz, meaning that the fluid phase as well as the particle phase are
modelled as continua. The second is an Euler-Lagrange ansatz, where the particles are
modelled as discrete objects.

10.2.1 Euler - Euler

In this example the particles are viewed as a continuum and described by a advection-
diffusion equation. This is done similar to the example thermal3d where the temperature
is the considered quantity. For particles however, inertia has to be taken into account.
This is achieved by applying the Stokes drag force to the velocity field. Since for this
computations also the velocity of the previous time step is required, the new descriptor
StokesDragAdvectionDiffusionD3Q7Descriptor has to be used, that is capable of
saving 2 velocity fields. Besides an extra lattice for the advection-diffusion equation,
a SuperExternal3D structure is required to manage the communication for parallel
execution.

SuperExternal3D <T, ADDESCRIPTOR > sExternal(

superGeometry , sLatticeAD ,

ADDESCRIPTOR <T>:: ExternalField :: velocityBeginsAt ,
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ADDESCRIPTOR <T>:: ExternalField :: numScalars ,

5 sLatticeAD.getOverlap ());

...

sExternal.communicate ();

The function communicate() is called in the time loop and handles the communication
analogue to the lattices.
Furthermore the new dynamics object StokesDragAdvectionDiffusionBGKdynamics is
required to access the saved velocity fields correctly and use them in an efficient way.
The coupling of the lattices is done by

1 StokesDragCouplingGenerator3D <T,NSDESCRIPTOR > coupling(

converter , radius , partRho ,

ADDESCRIPTOR <T>:: ExternalField :: velocityBeginsAt);

sLatticeNS.addLatticeCoupling(superGeometry , 1, coupling ,

sLatticeAD);

This object also handles the application of the drag force to the velocity field, therefore
it takes the particle radius radius and density partRho as arguments.
For the simulation of particles as a continuum, also new boundary conditions are re-
quired. Here addZeroDistributionBoundary represents an unidirectional outflow con-
dition, that removes particle concentrations that cross a boundary. For the usual
outflow at the bottom of the bifurcation a new ConvectionBoundary for advection-
diffusion lattices can be applied, that approximates a Neumann boundary condition.
Since non-local computations (gradient is required) are performed on the the exter-
nal field, also a Neumann boundary condition is required that is here implemented as
addExtFieldBoundary.

10.2.2 Euler - Lagrange

The main task of his example is to show the using of Lagrangian particles with OpenLB.
Similar to the BlockLattice and SuperLattice structure a ParticleSystem and
SuperParticleSystem structure exists. In line 2 of Listing 10.1 the
SuperParticleSystem is instantiated. It takes a SuperGeometry and LBConverter

as parameters. In line 4 the SuperParticleSysVtuWriter is instantiated. It takes
the SuperParticleSystem, a filename as string, and the wanted particle properties as
arguments. Calling the function SuperParticleSysVtuWriter.write(int timestep)

does create ∗.vtu files of the particles positions for the given timestep. These files can
be visualized with Paraview. Line 10 instantiates an interpolation functor for the fluids
velocity, which is used in line 13 during the instantiation of StokesDragForce. Parti-
cles need boundary conditions also. In this example the simplest possible boundary is
chosen. If a particle moves into a lattice node with material number 2, 4 or 5 its velocity
is set to 0 and it is neclected during further computations. This MaterialBoundary is
instantiated in line 16. In lines 18 and 19the force and boundary condition are added to
and stored in the respective lists in the SuperParticleSystem.
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The actual number crunching is then done in line 25 which is positioned in the main
loop of the program. The supParticleSystem.simulate(T timeStep); function in-
tegrates the particle trajectories by timeStep. Therefore all stored particle forces are
computed and summed up. The particles are moved one step according to Newton’s
laws. Then all stored particle boundary conditions are applied. Parallelization of the
particles is done automatically.

Results of this simulation are published in Henn et al. [23].

Listing 10.1: Usage of class SuperParticleSystem

// SuperParticleSystems3D

SuperParticleSystem3D <T, PARTICLE > supParticleSystem(

superGeometry , converter);

// define which properties are to be written in output data

SuperParticleSysVtuWriter <T, PARTICLE > supParticleWriter(

supParticleSystem , ” p a r t i c l e s ”,
5 SuperParticleSysVtuWriter <T, PARTICLE >:: particleProperties ::

velocity |

SuperParticleSysVtuWriter <T, PARTICLE >:: particleProperties ::

mass |

SuperParticleSysVtuWriter <T, PARTICLE >:: particleProperties ::

radius |

SuperParticleSysVtuWriter <T, PARTICLE >:: particleProperties ::

active);

10 SuperLatticeInterpPhysVelocity3D <T, DESCRIPTOR > getVel(sLattice ,

converter);

auto stokesDragForce = make_shared <StokesDragForce3D <T, PARTICLE

, DESCRIPTOR >> (getVel , converter);

// material numbers where particles should be reflected

15 std::set <int > boundMaterial = { 2, 4, 5};

auto materialBoundary = make_shared <MaterialBoundary3D <T,

PARTICLE >> (superGeometry , boundMaterial);

supParticleSystem.addForce(stokesDragForce);

supParticleSystem.addBoundary(materialBoundary);

20 supParticleSystem.setOverlap (2. * converter.getLatticeL ());

\* ... *\

main loop {

25 supParticleSystem.simulate(converter.physTime ());

}

Besides the particles the examples uses the save feature of the SuperLattice. By

sLattice.save(” f l u i d S o l u t i o n ”)
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and

sLattice.load(” f l u i d S o l u t i o n ”)

the current state of the SuperLattice can be saved and loaded again. Using this feature
the startup phase for the fluid has to be computed only once.

10.3 bstep2d and bstep3d

This example implements a backward facing step. Furthermore, it is shown how check-
pointing is used to regularly save the state of the simulation.

10.4 cavity2d and cavity3d

This example illustrates a flow in a cuboid, lid-driven cavity. The 2D version also shows
how to use the XML parameter files and has an example description file for OpenGPI.
This example is available in two different versions for sequential and parallel use.

10.5 cylinder2d and cylinder3d

This example examines a steady flow past a cylinder placed in a channel. The cylinder
is offset somewhat from the center of the flow to make the steady-state symmetrical
flow unstable. At the inlet, a Poiseuille profile is imposed on the velocity, whereas the
outlet implements a Dirichlet pressure condition set by p = 0, inspired by [33]. For high
resolution, low latticeU, and enough time to converge, the results for pressure drop, drag
and lift lie within the estimated intervals for the exact results. An unsteady flow with
Karman vortex street can be created by changing the Reynolds number to Re=100. The
3D version also shows the usage of the STL-reader. The model was created using the
open source CAD tool FreeCAD [7].

10.6 multiComponent2d and multiComponent3d

This example demonstrates Rayleigh-Taylor instability in 2D and 3D, generated by a
heavy fluid penetrating a light one. The multi-component fluid model by X. Shan and H.
Chen is used [29]. These examples show the usage of multicomponent flow and periodic
boundaries.

10.7 nozzle3d

This example examines a turbulent flow in a nozzle injection tube. At the main inlet,
either a block profile or a power 1/7 profile is imposed as a Dirchlet velocity boundary
condition, whereas at the outlet a Dirichlet pressure condition is set by p=0 (i.e. rho=1).
The example shows the usage of turbulence models.
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10.8 phaseSeparation2d and phaseSeparation3d

In these examples the simulation is initialized with a given density plus small, random
variation over the domain. This condition is unstable and leads to liquid-vapor phase
separation. Boundaries are assumed to be periodic. These examples show the usage of
multiphase flow.

10.9 poiseuille2d

This example examines a 2D Poseuille flow. Computation of error norms via functors is
also shown. bgkPoiseuille2d and mrtPoiseuille2d use a velocity or pressure bound-
ary at the inlet/outlet. In forcedPoiseuille2d the boundaries are periodic between
the inlet and outlet. As the flow is driven by a body force, it illustrates both the use
of a body force and periodic boundaries. In addition to different flavors of BGK [15]
and the regularized LB model [25], OpenLB offers implementations of entropic and
multiple-relaxation-time (MRT) models. mrtPoiseuille2d illustrates the use of MRT.
An example program for the entropic model is not yet available.

10.10 thermal2d and thermal3d

This example demonstrates Rayleigh-Bénard convection rolls in 2D and 3D, simulated
with the thermal LB model by Guo et al. [21], between a hot plate at the bottom and
a cold plate at the top.

10.11 venturi3d

This example examines a steady flow in a venturi tube. At the main inlet, a Poiseuille
profile is imposed as a Dirichlet velocity boundary condition, whereas at the outlet and
the minor inlet, a Dirichlet pressure condition is set by p=0 (i.e. rho=1). The example
shows the usage of the Indicator functors to build up a geometry and explains how to
set boundary conditions automatically.
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[33] S. Turek and M. Schäfer. “Benchmark computations of laminar flow around cylin-
der”. In: Flow Simulation with High-Performance Computers II. Vol. 52. Notes on
Numerical Fluid Mechanics. Vieweg, Jan. 1996, pp. 547–566.

[34] D. Yu, R. Mei, L.-S. Luo, and W. Shyy. “Viscous flow computations with the
method of lattice Boltzmann equation”. In: Progress in Aerospace Sciences 39.5
(2003), pp. 329–367.

[35] Q. Zou and X. He. “On pressure and velocity boundary conditions for the lattice
Boltzmann BGK model”. In: Phys. Fluids 9 (1997), pp. 1592–1598.

73



12 License

GNU Free Documentation License
Version 1.2, November 2002

Copyright c© 2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and
useful document “free” in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way to
get credit for their work, while not being considered responsible for modifications made
by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, be-
cause free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. Applicability and definitions

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms of this
License. Such a notice grants a world-wide, royalty-free license, unlimited in duration,
to use that work under the conditions stated herein. The “Document”, below, refers
to any such manual or work. Any member of the public is a licensee, and is addressed
as “you”. You accept the license if you copy, modify or distribute the work in a way
requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document
or a portion of it, either copied verbatim, or with modifications and/or translated into
another language.
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A “Secondary Section” is a named appendix or a front-matter section of the Doc-
ument that deals exclusively with the relationship of the publishers or authors of the
Document to the Document’s overall subject (or to related matters) and contains noth-
ing that could fall directly within that overall subject. (Thus, if the Document is in
part a textbook of mathematics, a Secondary Section may not explain any mathemat-
ics.) The relationship could be a matter of historical connection with the subject or
with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for re-
vising the document straightforwardly with generic text editors or (for images composed
of pixels) generic paint programs or (for drawings) some widely available drawing edi-
tor, and that is suitable for input to text formatters or for automatic translation to a
variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To
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“Preserve the Title” of such a section when you modify the Document means that it
remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any
other implication that these Warranty Disclaimers may have is void and has no effect
on the meaning of this License.

2. Verbatim Copying

You may copy and distribute the Document in any medium, either commercially
or noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions in
section 3.

You may also lend copies, under the same conditions stated above, and you may
publicly display copies.

3. Copying in quantity

If you publish printed copies (or copies in media that commonly have printed covers)
of the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of
these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document
and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.
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It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. Modifications

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section Entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.
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J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties–for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added
the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. Combining documents
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You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the various
original documents, forming one section Entitled “History”; likewise combine any sec-
tions Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must
delete all sections Entitled “Endorsements”.

6. Collections of documents

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various docu-
ments with a single copy that is included in the collection, provided that you follow the
rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individ-
ually under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

7. Aggregation with independent works

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Docu-
ment, then if the Document is less than one half of the entire aggregate, the Document’s
Cover Texts may be placed on covers that bracket the Document within the aggregate,
or the electronic equivalent of covers if the Document is in electronic form. Otherwise
they must appear on printed covers that bracket the whole aggregate.

8. Translation
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Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with trans-
lations requires special permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the original versions of these
Invariant Sections. You may include a translation of this License, and all the license
notices in the Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the original version
of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. Termination

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

10. Future revisions of this license

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Docu-
ment specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version number of this
License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.
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