
OpenLB technical report:

Installing CUDA for OpenLB

Maximilian Schecher

March 2023

Installing CUDA for Nvidia GPUs

The following is a quick guide on how to install the CUDA functionality for
Nvidia graphics cards on both Windows or Linux. The �rst two sections
describe how to install CUDA on Windows via WSL or Linux, respectively.
The third section discusses how to set up OpenMPI, a CUDA-aware MPI
implementation, and the fourth and �nal section explains how to con�gure
OpenLB to make use of the installed functionalities.

CUDA on Windows with WSL

The preferred approach for OpenLB on Windows is to use the Windows Sub-
system for Linux (WSL). The following was written with the assumption that
OpenLB has been successfully set up on WSL with Ubuntu.

The following speci�cations are needed to get CUDA running via WSL:

� Windows 10 version 21H2 or higher

� CUDA compatible Nvidia graphics card

� WSL 2 with a glibc-based distribution (e.g. Ubuntu)

To �nd out which Windows version exactly you're using, open up the run

dialog box in Windows and type in the command winver, which will display
a pop-up window similar to the one below:

1

Figure 1: Pop-up window displaying the exact version and build of Windows.

In order to �nd out what graphics card you have and whether it is com-
patible with CUDA, open the up the Windows run dialog and type in the
command dxdiag, which will open the DirectX Diagnostic Tool. Un-
der the tab Render, it will display the information regarding your graphics
card. In the example picture of the DirectX Diagnostic Tool below, the
graphics card is a NVIDIA GeForce GTX 1650. Nvidia provides the infor-
mation on which graphics card is compatible with CUDA on their website
(https://developer.nvidia.com/cuda-gpus).

2

https://developer.nvidia.com/cuda-gpus

Figure 2: The Render tab of the DirectX Diagnostic Tool.

CUDA is only supported on version 2 of the Windows Subsystem for Linux
(WSL). To con�rm which version of WSL is installed, open the Windows
PowerShell with administrator rights and type in the command

wsl --list --verbose

This will display which Linux distribution and which version of WSL is cur-
rently installed. The output should look similar to the following:

PS C:\Windows > wsl --list --verbose

NAME STATE VERSION

* Ubuntu Stopped 1

Listing 1: WSL table of installed distributions

In this example the distribution that is installed is Ubuntu and the WSL
version is 1. Upgrading to the necessary version 2 can be done by typing

wsl --set-version Ubuntu 2

into the PowerShell terminal. Note that when using a di�erent distribution
for WSL, the command has to be adjusted accordingly.

3

An error might occur claiming that a certain hard-link target does not exist.
This means that there is software installed on WSL that collides with the
update. The error message will provide the path of the non-existing hard-
link, which will be a hint onto which package causes this error. In the WSL
terminal, the command

sudo apt list --installed

will give an overview over all the installed packages. The con�icting package
can then be removed with

sudo apt-get remove [PACKAGE-NAME]

Once the package has been removed, WSL can be upgraded. On a succussful
upgrade, we should receive a message that the conversion is complete and we
can verify the version with the

wsl --list --verbose

command. The con�icting package can then be reinstalled.

In order for WSL to have access to the GPU hardware, virtual GPU needs
to be enabled on Windows. This can be done by installing an appropri-
ate driver on Windows. It should not be necessary to install any device
drivers on WSL itself. It is even highly suggested not to do so, since any
installation of a driver on WSL itself might override the functionality pro-
vided by the driver that is installed onto Windows. As of the writing of this
guide, the most recent Nvidia drivers automatically support virtual GPU
for WSL. The newest driver can be directly downloaded from the Nvidia
website (https://www.nvidia.com/download/index.aspx). The website o�ers
dropdown lists to specify what product type, device, operating system, etc.
the driver is needed for. Once the most recent driver is installed, we can
install the CUDA toolkit on WSL.

4

https://www.nvidia.com/download/index.aspx

The following commands typed into the WSL terminal will install the Nvidia
CUDA toolkit on WSL (Ubuntu):

sudo apt -key del 7fa2af80

wget https :// developer.download.nvidia.com/compute/cuda/repos/

wsl -ubuntu/x86_64/cuda -wsl -ubuntu.pin

sudo mv cuda -wsl -ubuntu.pin /etc/apt/preferences.d/

cuda -repository -pin -600

sudo apt -key adv --fetch -keys https :// developer.download.nvidia.com/

compute/cuda/repos/wsl -ubuntu/

x86_64 /3 bf863cc.pub

sudo add -apt -repository 'deb https :// developer.download.nvidia.com/

compute/cuda/repos/wsl -ubuntu/x86_64/ /'

sudo apt -get update

sudo apt -get -y install cuda

Listing 2: Commands to install CUDA on WSL

If the Nvidia CUDA compiler is correctly installed, the command

nvcc --version

will reply with a message similar to the following:

nvcc: NVIDIA (R) Cuda compiler driver

Copyright (c) 2005 -2022 NVIDIA Corporation

Built on Mon_Oct_24_19 :12:58 _PDT_2022

Cuda compilation tools , release 12.0, V12 .0.76

Build cuda_12 .0. r12 .0/ compiler .31968024 _0

Listing 3: Version details of an installed Cuda compiler

To check the versions of CUDA and the driver, the command

nvidia-smi

will respond with the Nvidia System Management Interface, displaying vari-
ous information about the installed GPUs (see Figure 3). The CUDA toolkit
should now be properly installed and working.

5

Figure 3: The NVIDIA System Management Interface

CUDA on Linux

Before installing the CUDA toolkit on Linux, typing the command

lspci | grep -i nvidia

can con�rm that the GPU is CUDA-capable.

To install the CUDA toolkit on Linux, visit the the Nvidia website and choose
the �tting operating system, architecture, distribution, as well as the pre-
ferred installation type for your system (https://developer.nvidia.com/cuda-
toolkit). The website will then provide you with the correct commands with
which you can install the CUDA toolkit on your Linux system.

After the installation of the toolkit, the environment variables need to be
set:

export PATH=/usr/local/cuda-12.0/bin${PATH:+:${PATH}}

If the installation was done with a run�le, the LD_LIBRARY_PATH variable
has to be set, as well. The following command sets this variable on a 64-bit
system. The command for 32-bit systems is almost identical: lib64 has to
be exchanged for lib:

export LD_LIBRARY_PATH=/usr/local/cuda-12.0/lib64\

${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

6

https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit

If a di�erent install path or version of the CUDA toolkit has been chosen
during the installation process, both commands above have to be altered
accordingly. To con�rm that the installation has been successful, use the
commands

nvcc --version

and

nvidia-smi

If the CUDA toolkit has been installed correctly, an output similar to those
shown in Listing 3 and Figure 3 respectively.

OpenMPI

To have the functionality of MPI in combination with CUDA, there are sev-
eral CUDA-aware MPI implementations available. This section will describe
the installation of the open-source implementation OpenMPI in four steps:

1. Download the desired OpenMPI version from the website (https://www.open-
mpi.org/software/). As of the writing of this guide, the most current version
was openmpi-4.1.5.tar.bz2

2. In your Linux (or WSL for Windows) terminal, move to the folder where
the �le was saved to and extract the downloaded package via the command

tar -jxf openmpi-4.1.5.tar.bz2

3. Change into this new directory to con�gure, compile and install OpenMPI
with the following three commands:

./configure --prefix=$HOME/opt/openmpi

--with-cuda=/usr/local/cuda-12.0/include

make all

make install

Note that the path following �prefix= is the path we wish to install openmpi
in and the path following �with-cuda= is the location of the include folder
of your CUDA installation. These paths might be di�erent depending on the
users choices.

4. Change the environment variables with the following two commands in
the Linux or WSL terminal:

7

https://www.open-mpi.org/software/
https://www.open-mpi.org/software/

echo "export PATH=\$PATH:\$HOME/opt/openmpi/bin" >> $HOME/.bashrc

echo "export LD_LIBRARY_PATH=\$LD_LIBRARY_PATH:

\$HOME/opt/openmpi/lib" \ >> $HOME/.bashrc

Once again the path for openmpi, might be di�erent, depending on where
the software was installed.

To see whether the installation of OpenMPI was successful, we can enter
the command

ompi_info --parsable -l 9

--all | grep mpi_built_with_cuda_support:value

If the installation was done successfully, the terminal should respond with
the output true.

Utilizing CUDA in OpenLB

The root directory contains a folder named config, in which several build
con�g examples can be found. The config.mk make�le of the root directory
can be replaced with the make�le that suits the current needs (e.g. using
only the GPU, using the GPU with MPI, using CPU with MPI, etc.). Each
example make�le also includes instructions.

Make a backup of the current config.mk in the root directory and replace
it with a copy of the make�le gpu_only found in the config folder. After
renaming gpu_only to config.mk, we open the �le and check the value of
CUDA_ARCH: This value might have to be changed, depending on your graph-
ics card and its architecture. The �le rules.mk in the root directory contains
a table that shows which architecture goes with which value:

| CUDA Architecture | Version |

|-------------------+------------|

| Fermi | 20 |

| Kepler | 30, 35, 37 |

| Maxwell | 50, 52, 53 |

| Pascal | 60, 61, 62 |

| Volta | 70, 72 |

| Turing | 75 |

| Ampere | 80, 86, 87 |

Listing 4: CUDA architectures and their corresponding version numbers

Another table on the internet (https://en.wikipedia.org/wiki/CUDA) shows
which graphics card corresponds to which architecture. This guide used the

8

https://en.wikipedia.org/wiki/CUDA

GTX 1650 as an example for the graphics card. The following picture shows
that the GTX 1650 corresponds to the Turing architecture, so the value of
CUDA_ARCH has to be set to 75 in both config.mk and rules.mk �les. Af-

Figure 4: Table containing Nvidia GPUs with the Turing Microarchitecture.

ter saving the changes of CUDA_ARCH in both config.mk and rules.mk, the
config.mk can be compiled via the command make clean; make in your
WSL (or Linux) terminal.

It is now possible to compile and execute one of the GPU-enabled OpenLB
examples with CUDA support.

9

