Skip to content

Re: Free-Slip Boundary Condition – Implementation Doubts


Hi Robin,rnrnThanks for your response. From your last post I have some doubts:rn

    rn1. What do you mean by doing an analogue implementation ?rnrn2. The vector

n should be the normal vector in order to implement the condition grad(U)*n = 0. Maybe I did not express myself correctly in my post for the “”von Neumann boundary condition””. So in this case it is me that is wrong ;).rnrn3. I have not well understood the “”overlap”” region. But from your response, will all the nodes/lattices at the boundary be implemented to the boundary condition defined by slip-boundary/velocity-boundary/etc.? rnrnrnI am trying to implement the free-slip boundary condition at the boundary from the default non-local boundary condition based in the work of Skordos (1993). I figured out how the addVelocityBoundary from the class olb::sOnLatticeBoundaryCondition2D implements:rnrnolb::StraightFdBoundaryProcessor2D< T, Lattice, direction, orientation > Class Template ReferencernrnThis class corresponds to the algorithm proposed by Skordos. This class is used as post-processor. The process is called from the class SuperLatticeXD in the collideAndStream() function.rnrnI would like to define a new class from StraightFdBoundaryProcessor2D class in order to redefine a new process function that will define grad(U)*n = 0. Also, I am trying to inheritance the class SuperLattice2D to add a new function addFreeSlipBoundary which will used to invoke the new class from StraightFdBoundaryProcessor2D. Basically, I want to modify the post-process function according to what I want and then I define a new function to implement this post-processor function, like the addVelocityBoundary function.rnrnDo you have any idea how could this could be made ? Does exist a better way to give the boundary conditions for the velocity and the grad(u) in the Skordos algorithm?rnrnBest Regards,rnrnAlejandro